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what is the minimal number of comparators in a sorting
network on n channels (sn)?
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history

optimal size sn: minimal number of comparisons to sort n inputs

knuth 1973
n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
31 35 39 43 47 51 56

values for n ≤ 4 from information theory

values for n = 5 and n = 7 by exhaustive case analysis

knuth sn ≥ sn−1 + 3  values for n = 6, 8

van voorhis sn ≥ sn−1 + lg(n)  other lower bounds



history

optimal size sn: minimal number of comparisons to sort n inputs

yours truly
2014

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
33 37 41 45 49 53 58

generate-and-prune algorithm

intensive parallel computing

∼ 16 years of cpu time to compute s9



history

optimal size sn: minimal number of comparisons to sort n inputs

yours truly
2014

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
33 37 41 45 49 53 58

generate-and-prune algorithm

intensive parallel computing

∼ 16 years of cpu time to compute s9

but how do we know that these results are correct?
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pros and cons

the easy stuff

(very) constructive theory

everything is decidable

many proofs by exhaustive case analysis

elementary definitions

main challenges

all finite domains (channels, inputs, . . . )

reasoning about permutations (in proofs)

very informal proofs (“trivial”, “exercise”, “clearly”)
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comparator networks

comparator
network

sequence of comparators (i , j) with 0 ≤ i 6= j < n
n is the number of channels

Definition comparator : Set := (prod nat nat).

Definition comp_net : Set := list comparator.

Definition comp_channels (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).

Definition channels (n:nat) (C:comp_net) :=

forall c:comparator, (In c C) -> (comp_channels n c).

Definition comp_standard (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<j).

Definition standard (n:nat) (C:comp_net) :=

forall c:comparator, (In c C) -> (comp_standard n c).
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sorting networks (i/iii)

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

Inductive bin_seq : nat -> Set :=

| empty : bin_seq 0

| zero : forall n:nat, bin_seq n -> bin_seq (S n)

| one : forall n:nat, bin_seq n -> bin_seq (S n).

Fixpoint get n (s:bin_seq n) (i:nat) : nat := ...

Fixpoint set n (s:bin_seq n) (i:nat) (x:nat)

: (bin_seq n) := ...

similar to Vector from the standard library

definition of sorted (property) and sort (operation)

induction principles, exhaustive enumeration

∼ 70 lemmas in total
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sorting networks (ii/iii)

output C (~x) denotes the output of C on ~x = x1 . . . xn

Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n) :=

let (i,j):=c in let x:=(get s i) in let y:=(get s j) in

match (le_lt_dec x y) with

| left _ => s

| right _ => set (set s j x) i y

end.

Fixpoint full_apply (C:comp_net) n (s:bin_seq n)

: (bin_seq n) :=

match C with

| nil => s

| cons c C’ => full_apply C’ _ (apply c s)

end.

Global Notation "C [ s ]" := (full_apply C _ s) (at level 0).
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Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n).

Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n).
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Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n))

:= (map (full_apply C (n:=n)) (all_bin_seqs n)).

sorting network C (~x) is sorted for every input ~x

Definition sort_net (n:nat) (C:comp_net) :=

(channels n C) /\ forall s:bin_seq n, sorted C[s].

Theorem SN_char : forall C n, channels n C ->

(forall s, In s (outputs C n) -> sorted s) ->

sort_net n C.
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sorting networks (iii/iii)

sanity check
Definition SN4 :=

(0[<]1 :: 2[<]3 :: 0[<]2 ::

1[<]3 :: 1[<]2 :: nil).

Theorem SN4_SN: sort_net 4 SN4.

the bad news does not scale for 9 channels

the good news “C is a sorting network” is decidable

Lemma SN_dec : forall n C, channels n C ->

{sort_net n C} + {~sort_net n C}.

program extraction  haskell program (tests all inputs)

nearly best possible algorithm (known result)

short formalization (∼ 35 lemmas)
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the key result (i/iii)

output lemma
(parberry 1991)

if outputs(C ) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

proof {0, 1}n C // A⊆
{0, 1}n C ′ // A′

N // S

proof (coq’able) we want to show sort net (C++N)

which reduces to forall s, sorted (C++N)[s]

but (C++N)[s] = N[C[s]]

by hypothesis there is y with C[s] = C’[y]

hence N[C[s]] = N[C’[y]] = (C’++N)[y]

which is sorted by sort net (C’++N)
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the key result (ii/iii)

permuted
output lemma

if π(outputs(C )) ⊆ outputs(C ′) for some permutation π
and C ′ extends to a sorting network, then C extends to
a sorting network

proof
{0, 1}n C // A

π
��

{0, 1}n C ′ // A′
N // S

“argument” |outputs(C ′;N)|︸ ︷︷ ︸
only sorted sequences

≥ |outputs(C ; st(π(N)))|︸ ︷︷ ︸
includes all sorted sequences

therefore these sets are equal

 how do we formalize this?
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(oops)

published proof uses: π(outputs(S)) = outputs(π(S))
coq says: π(outputs(S)) = π−1(outputs(π(S)))

 how do we formalize this?



the key result (ii/iii)

permuted
output lemma

if π(outputs(C )) ⊆ outputs(C ′) for some permutation π
and C ′ extends to a sorting network, then C extends to
a sorting network

proof
{0, 1}n C // A

π
��

st(π(N)) // S

{0, 1}n C ′ // A′
N // S

“argument” |outputs(C ′;N)|︸ ︷︷ ︸
only sorted sequences

≥ |outputs(C ; st(π(N)))|︸ ︷︷ ︸
includes all sorted sequences

therefore these sets are equal

 how do we formalize this?



standardization (i/ii)

standardization take the first non-standard comparator (i , j) and
interchange i and j in all subsequent positions; repeat
until network is standard

lemma if C is a sorting network, then so is st(C )

proof the elements of outputs(st(C )) are obtained by
permuting all elements of outputs(C ) in the same way;
since st(C ) does not change sorted inputs, this
permutation must be the identity

(again the cardinality argument. . . )
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standardization (ii/ii)

standardization Function standardize (C:comp_net) {measure length C}

: comp_net := match C with

| nil => nil

| cons c C’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y :: standardize C’)

| right _ => (y[<]x :: standardize (permute x y C’))

end

end.

not structurally decreasing

lots of implicit properties

lemma Theorem standardization_sort : forall C n,

sort_net n C -> sort_net n (standardize C).
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not structurally decreasing

lots of implicit properties

preserves size and number of channels
preserves standard prefix
result is standard
idempotent

lemma Theorem standardization_sort : forall C n,
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standardization (ii/ii)

standardization Function standardize (C:comp_net) {measure length C}

: comp_net := match C with

| nil => nil

| cons c C’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y :: standardize C’)

| right _ => (y[<]x :: standardize (permute x y C’))

end

end.

not structurally decreasing

lots of implicit properties

lemma Theorem standardization_sort : forall C n,

sort_net n C -> sort_net n (standardize C).



standardization (ii/ii)

standardization Function standardize (C:comp_net) {measure length C}

: comp_net := match C with

| nil => nil

| cons c C’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y :: standardize C’)

| right _ => (y[<]x :: standardize (permute x y C’))

end

end.

not structurally decreasing

lots of implicit properties

lemma Theorem standardization_sort : forall C n,

sort_net n C -> sort_net n (standardize C).

 requires ∼ 60 lemmas about permutations



subsumption

definition C �π C ′ if π(outputs(C )) ⊆ outputs(C ′)
C � C ′ if C �π C ′ for some permutation π

 subsumption is reflexive and transitive

Variable n:nat.

Variables C C’:comp_net.

Variable P:permut.

Variable HP:permutation n P.

Definition subsumption :=

forall s:bin_seq n, In s (outputs C n) ->

In (apply_perm P s) (outputs C’ n).

Lemma subsumption_dec : {subsumption} + {~subsumption}.

Theorem BZ : standard n C -> subsumption ->

sort_net n (C’++N) ->

sort_net n (standardize (C ++ apply_perm_to_net P N)).
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the key result (iii/iii)

Theorem BZ : standard n C -> subsumption ->

sort_net n (C’++N) ->

sort_net n (standardize (C ++ apply_perm_to_net P N)).

proof (coq’able) [write π(N) for apply perm to net P N]
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generate Nn
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k by one
comparator in all possible ways
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k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k
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quadratic step

inner loop searches among all permutations
typically fails
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the algorithm

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate Nn
k+1 extend each net in Rn

k by one
comparator in all possible ways

prune to Rn
k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k

certified checker using recorded subsumptions as an oracle

replace pruning cycle by oracle calls

skeptic approach towards oracle

use program extraction

verifies all cases up to s8, requires ∼18 years for s9. . .



checker soundness

Definition Oracle := list (comp_net * comp_net * (list nat)).

Inductive Answer : Set :=

| yes : nat -> nat -> Answer

| no : forall n k:nat, forall R:list comp_net,

NoDup R ->

(forall C, In C R -> length C = k) ->

(forall C, In C R -> standard n C) -> Answer

| maybe : Answer.

Fixpoint Generate_and_Prune (n k:nat) (O:list Oracle) :

Answer.

Theorem GP_no : forall n k O R HR0 HR1 HR2,

Generate_and_Prune n k O = no n k R HR0 HR1 HR2 ->

forall C, sort_net n C -> length C > k.

Theorem GP_yes : forall n k O m,

Generate_and_Prune n k O = yes n m ->

(forall C, sort_net n C -> length C >= m) /\

exists C, sort_net n C /\ length C = m.
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conclusions & future work

results

theory of optimal-size sorting networks

formal verification of exact values of sn for n ≤ 8

optimizations to the checker allowed verification of s9

next episodes

formal proof of van voorhis’ sn ≥ sn−1 + lg(n) to obtain
s10

other problems in sorting networks

improvements to extraction



thank you!
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