a formalized checker for size-optimal sorting networks

luís cruz-filipe

(joint work with peter schneider-kamp)

department of mathematics and computer science university of southern denmark

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

itp 2015 august 27th, 2015

outline

(中) (문) (문) (문) (문)

sorting networks in a nutshell

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

size this net has 5 channels and 9 comparators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

size this net has 5 channels and 9 comparators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

size this net has 5 channels and 9 comparators

more info see d.e. knuth, *the art of computer programming*, vol. 3

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

history

optimal size

knuth 1973

 s_n : minimal number of *comparisons* to sort n inputs

п	1	2	3	4	5	6	7	8	9	10
c	0	1	3	5	0	12	16	10	25	29
3 _n	0	T	5	5	9	12	10	19	23	27
		п	11	12	13	5	14	15	16	17
		6	35	39	45		51	56	60	73
		s _n	31	35	39) .	43	47	51	56

values for $n \le 4$ from information theory values for n = 5 and n = 7 by exhaustive case analysis knuth $s_n \ge s_{n-1} + 3$ \rightsquigarrow values for n = 6, 8van voorhis $s_n \ge s_{n-1} + \lg(n)$ \rightsquigarrow other lower bounds

history

yours truly 2014

optimal size s_n : minimal number of *comparisons* to sort *n* inputs

п	1	2	3	4	5	6	7	8	9	10
s _n	0	1	3	5	9	12	16	19	25	29
		n	11	12	13	3	14	15	16	17
		5	35	39	45	5	51	56	60	73
		5/1	33	37	41	L ·	45	49	53	58

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- generate-and-prune algorithm
- intensive parallel computing
 - ~ 16 years of cpu time to compute s_0

history

yours truly 2014

optimal size s_n: minimal number of *comparisons* to sort *n* inputs

n	1	2	3	4	5	6	7	8	9	10
s _n	0	1	3	5	9	12	16	19	25	29
		n	11	12	13	3	14	15	16	17
		s _n	35 33	39 37	45 4 1	5 L	51 45	56 49	60 53	73 58

- generate-and-prune algorithm
- intensive parallel computing
 - ~ 16 years of cpu time to compute s_0

but how do we know that these results are correct?

outline

(中) (문) (문) (문) (문)

sorting networks in a nutshell

sorting networks, coq style

generate-andprune

conclusions හ future work

pros and cons

the easy stuff

- (very) constructive theory
- everything is decidable
- many proofs by exhaustive case analysis

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

elementary definitions

pros and cons

the easy stuff

- (very) constructive theory
- everything is decidable
 - many proofs by exhaustive case analysis
- elementary definitions

main challenges

- all finite domains (channels, inputs, ...)
- reasoning about permutations (in proofs)
- very informal proofs ("trivial", "exercise", "clearly")

comparator networks

comparator sequence of *comparators* (i, j) with $0 \le i \ne j < n$ *network n* is the number of channels

> Definition comparator : Set := (prod nat nat). Definition comp_net : Set := list comparator.

```
Definition comp_channels (n:nat) (c:comparator) :=
 let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).
```

Definition channels (n:nat) (C:comp_net) := forall c:comparator, (In c C) \rightarrow (comp_channels n c).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

comparator networks

comparator

```
sequence of comparators (i, j) with 0 \le i \ne j < n
network n is the number of channels
```

Definition comparator : Set := (prod nat nat). Definition comp_net : Set := list comparator.

```
Definition comp_channels (n:nat) (c:comparator) :=
 let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).
```

```
Definition channels (n:nat) (C:comp_net) :=
  forall c:comparator, (In c C) \rightarrow (comp_channels n c).
```

intuition

(0,2),(1,3) is a comparator network on 4 channels, but also on 6 channels

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

comparator networks

comparator sequence of *comparators* (i, j) with $0 \le i \ne j < n$ *network n* is the number of channels

> Definition comparator : Set := (prod nat nat). Definition comp_net : Set := list comparator.

```
Definition comp_channels (n:nat) (c:comparator) :=
 let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).
```

Definition channels (n:nat) (C:comp_net) := forall c:comparator, (In c C) \rightarrow (comp_channels n c).

standard i < j for all $(i, j) \in C$

Definition comp_standard (n:nat) (c:comparator) := let (i,j) := c in (i<n) /\ (j<n) /\ (i<j).

Definition standard (n:nat) (C:comp_net) := forall c:comparator, (In c C) \rightarrow (comp_standard n c).

0/1 lemma C is a sorting network on n channels iff C sorts all (knuth 1973) inputs in $\{0, 1\}^n$

・ロト・日本・モート モー うへぐ

```
0/1 lemma C is a sorting network on n channels iff C sorts all
(knuth 1973) inputs in \{0, 1\}^n
```

```
Inductive bin_seq : nat -> Set :=
  | empty : bin_seq 0
  | zero : forall n:nat, bin_seq n -> bin_seq (S n)
  | one : forall n:nat, bin_seq n -> bin_seq (S n).
Fixpoint get n (s:bin_seq n) (i:nat) : nat := ...
Fixpoint set n (s:bin_seq n) (i:nat) (x:nat)
             : (bin_seq n) := ...
```

similar to Vector from the standard library definition of sorted (property) and sort (operation) induction principles, exhaustive enumeration \sim 70 lemmas in total

```
output C(\vec{x}) denotes the output of C on \vec{x} = x_1 \dots x_n
```

```
Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n) :=
 let (i,j):=c in let x:=(get s i) in let y:=(get s j) in
   match (le_lt_dec x y) with
   | left _ => s
    | right _ => set (set s j x) i y
    end.
```

```
Fixpoint full_apply (C:comp_net) n (s:bin_seq n)
  : (bin_seq n) :=
 match C with
 | nil => s
 | cons c C' => full_apply C' _ (apply c s)
 end.
```

```
Global Notation "C [ s ]" := (full_apply C _ s) (at level 0).
```

output $C(\vec{x})$ denotes the *output* of C on $\vec{x} = x_1 \dots x_n$

binary outputs

Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n). Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n) outputs $(C) = \{C(\vec{x}) \mid x \in \{0,1\}^n\}$

Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n))
 := (map (full_apply C (n:=n)) (all_bin_seqs n)).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	sorting networks (ii/iii)
output	$C(\vec{x})$ denotes the <i>output</i> of C on $\vec{x} = x_1 \dots x_n$
	Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n).
	Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n)
binary outputs	$outputs(\mathcal{C}) = \{\mathcal{C}(\vec{x}) \mid x \in \{0,1\}^n\}$
	<pre>Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n)) := (map (full_apply C (n:=n)) (all_bin_seqs n)).</pre>
sorting network	$C(\vec{x})$ is sorted for every input \vec{x}
	<pre>Definition sort_net (n:nat) (C:comp_net) := (channels n C) /\ forall s:bin_seq n, sorted C[s].</pre>
	Theorem SN_char : forall C n, channels n C -> (forall s, In s (outputs C n) -> sorted s) -> sort_net n C.

・ロト・日本・日本・日本・日本・日本

Definition SN4 :=
 (0[<]1 :: 2[<]3 :: 0[<]2 ::
 1[<]3 :: 1[<]2 :: nil).</pre>

Theorem SN4_SN: sort_net 4 SN4.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

sanity check

Definition SN4 :=
 (0[<]1 :: 2[<]3 :: 0[<]2 ::
 1[<]3 :: 1[<]2 :: nil).</pre>

Theorem SN4_SN: sort_net 4 SN4.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the bad news

does not scale for 9 channels

sanity check

Definition SN4 :=
 (0[<]1 :: 2[<]3 :: 0[<]2 ::
 1[<]3 :: 1[<]2 :: nil).</pre>

Theorem SN4_SN: sort_net 4 SN4.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

the bad news

does not scale for 9 channels

the good news

"C is a sorting network" is decidable

Lemma SN_dec : forall n C, channels n C ->
 {sort_net n C} + {~sort_net n C}.

output lemma (parberry 1991)

if $outputs(C) \subseteq outputs(C')$ and C'; N is a sorting network, then C; N is a sorting network

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

output lemma (parberry 1991)

if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

proof

$$\{0,1\}^n \xrightarrow{C} A \\ |\cap \\ \{0,1\}^n \xrightarrow{C'} A' \xrightarrow{N} S$$

output lemma (parberry 1991) if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

proof

$$\{0,1\}^n \xrightarrow{C} A \xrightarrow{N} S$$
$$\stackrel{|\cap}{=} \{0,1\}^n \xrightarrow{C'} A' \xrightarrow{N} S$$

output lemma (parberry 1991) proof

proof (coq'able)

output lemma if outputs $(C) \subseteq$ outputs(C') and C'; N is a sorting network, then C; N is a sorting network

$$\{0,1\}^n \xrightarrow{C} A \xrightarrow{N} S$$
$$\downarrow \cap \\ \{0,1\}^n \xrightarrow{C'} A' \xrightarrow{N} S$$

we want to show sort_net (C++N)
which reduces to forall s, sorted (C++N)[s]
but (C++N)[s] = N[C[s]]
by hypothesis there is y with c[s] = C'[y]
hence N[C[s]] = N[C'[y]] = (C'++N)[y]
which is sorted by sort_net (C'++N)

permuted output lemma if $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

output lemma

permuted if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

output lemma

permuted if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

output lemma

permuted if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

output lemma

permuted if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

"argument"

 $|\operatorname{outputs}(C'; N)| \geq |\operatorname{outputs}(C; \operatorname{st}(\pi(N)))|$

only sorted sequences includes all sorted sequences therefore these sets are equal

permuted output lemma

if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

 $\{0,1\}^{n} \xrightarrow{C} A \xrightarrow{st(\pi(N))} S$ $\downarrow^{\pi} \\ \{0,1\}^{n} \xrightarrow{C'} A' \xrightarrow{N} S$

"argument" [outputs(C'; N)] \geq [outputs(C; st($\pi(N)$))]

only sorted sequences includes all sorted sequences therefore these sets are equal

by the way published proof uses: $\pi(\text{outputs}(S)) = \text{outputs}(\pi(S))$ (oops) cog says: $\pi(\text{outputs}(S)) = \pi^{-1}(\text{outputs}(\pi(S)))$

output lemma

permuted if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

"argument" [outputs(C'; N)] \geq [outputs(C; st($\pi(N)$))]

only sorted sequences includes all sorted sequences therefore these sets are equal

 \rightarrow how do we formalize this?

standardization

take the first non-standard comparator (i, j) and interchange i and j in all subsequent positions; repeat until network is standard

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

lemma if C is a sorting network, then so is st(C)

standardizationtake the first non-standard comparator (i, j) and
interchange i and j in all subsequent positions; repeat
until network is standardlemmaif C is a sorting network, then so is st(C)proofthe elements of outputs(st(C)) are obtained by
permuting all elements of outputs(C) in the same way;
since st(C) does not change sorted inputs, this
permutation must be the identity

standardization	take the first non-standard comparator (i, j) and interchange i and j in all subsequent positions; repeat until network is standard
lemma	if C is a sorting network, then so is $st(C)$
proof	the elements of outputs($st(C)$) are obtained by permuting all elements of outputs(C) in the same ways since $st(C)$ does not change sorted inputs, this permutation must be the identity

(again the cardinality argument...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

```
standardization
Function standardize (C:comp_net) {measure length C}
: comp_net := match C with
| nil => nil
| cons c C' => let (x,y) := c in
match (le_lt_dec x y) with
| left _ => (x[<]y :: standardize C')
| right _ => (y[<]x :: standardize (permute x y C'))
end
end.</pre>
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

standardization

```
Function standardize (C:comp_net) {measure length C}
: comp_net := match C with
| nil => nil
| cons c C' => let (x,y) := c in
match (le_lt_dec x y) with
| left _ => (x[<]y :: standardize C')
| right _ => (y[<]x :: standardize (permute x y C'))
end
end.</pre>
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- not structurally decreasing
- lots of implicit properties
 - preserves size and number of channels
 - preserves standard prefix
 - result is standard
 - idempotent

subsumption

definition $C \preceq_{\pi} C'$ if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ $C \preceq C'$ if $C \preceq_{\pi} C'$ for some permutation π

 \rightsquigarrow subsumption is reflexive and transitive

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

subsumption

```
definition C \preceq_{\pi} C' if \pi(\text{outputs}(C)) \subseteq \text{outputs}(C')
                  C \prec C' if C \preceq_{\pi} C' for some permutation \pi
```

```
Variable n:nat.
Variables C C':comp_net.
Variable P:permut.
Variable HP:permutation n P.
```

```
Definition subsumption :=
    forall s:bin_seq n, In s (outputs C n) ->
                        In (apply_perm P s) (outputs C' n).
```

```
Lemma subsumption_dec : {subsumption} + {~subsumption}.
```

```
Theorem BZ : standard n C -> subsumption ->
    sort_net n (C'++N) ->
    sort_net n (standardize (C ++ apply_perm_to_net P N)).
```

```
Theorem BZ : standard n C -> subsumption ->
    sort_net n (C'++N) ->
    sort_net n (standardize (C ++ apply_perm_to_net P N)).
```

proof (coq'able)

[write $\pi(N)$ for apply_perm_to_net P N] since standardize (C++ $\pi(N)$) is standard, it does not affect sorted sequences, so we show that (C++ $\pi(N)$)[s] = (C++ $\pi(N)$)[sort s] for every s

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
the key result (iii/iii)
                    Theorem BZ : standard n C -> subsumption ->
                        sort_net n (C'++N) ->
                        sort_net n (standardize (C ++ apply_perm_to_net P N)).
proof (coq'able)
                    [write \pi(N) for apply_perm_to_net P N]
                    since standardize (C++\pi(N)) is standard, it does not affect
                    sorted sequences, so we show that
                    (C++\pi(N))[s] = (C++\pi(N))[sort s] for every s
                    or equivalently that
                    \pi^{-1}(N[\pi(C[s])]) = \pi^{-1}(N[\pi(C[sort s])])
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
the key result (iii/iii)
                      Theorem BZ : standard n C -> subsumption ->
                          sort_net n (C'++N) ->
                          sort_net n (standardize (C ++ apply_perm_to_net P N)).
proof (coq'able)
                     [write \pi(N) for apply_perm_to_net P N]
                      since standardize (C++\pi(N)) is standard, it does not affect
                      sorted sequences, so we show that
                      (C++\pi(N))[s] = (C++\pi(N))[sort s] for every s
                      or equivalently that
                      \mathbb{N}[\pi(\mathbb{C}[s])) = \mathbb{N}[\pi(\mathbb{C}[sort s])]
```

```
Theorem BZ : standard n C -> subsumption ->
    sort_net n (C'++N) ->
    sort_net n (standardize (C ++ apply_perm_to_net P N)).
```

proof (coq'able)

[write $\pi(N)$ for apply_perm_to_net P N] since standardize (C++ $\pi(N)$) is standard, it does not affect sorted sequences, so we show that (C++ $\pi(N)$)[s] = (C++ $\pi(N)$)[sort s] for every s or equivalently that N[$\pi(C[s])$) = N[$\pi(C[sort s])$] N[$\pi(C[s])$] = N[C'[y]] = (C'++N)[y] = sort y for some y likewise N[$\pi(C[sort s])$] = sort y' for some y'

```
Theorem BZ : standard n C -> subsumption ->
    sort_net n (C'++N) ->
    sort_net n (standardize (C ++ apply_perm_to_net P N)).
```

proof (coq'able)

[write $\pi(N)$ for apply_perm_to_net P N] since standardize (C++ $\pi(N)$) is standard, it does not affect sorted sequences, so we show that (C++ $\pi(N)$)[s] = (C++ $\pi(N)$)[sort s] for every s or equivalently that N[$\pi(C[s])$) = N[$\pi(C[sort s])$] N[$\pi(C[s])$] = N[$\pi(C[sort s])$] = sort y for some y likewise N[$\pi(C[sort s])$] = sort y' for some y' and sort y = sort y' (same number of zeroes) \sim requires going back to s and sort s

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

outline

(中) (문) (문) (문) (문)

sorting networks in a nutshell

sorting networks, cog style

 $generate\text{-}and\text{-}\\prune$

conclusions & future work

$the \ algorithm$

init set
$$R_0^n = \{\emptyset\}$$
 and $k = 0$

repeat until k > 1 and $|R_k^n| = 1$

generate N_{k+1}^n extend each net in R_k^n by one comparator in all possible ways

prune to R_{k+1}^n keep only one element from each minimal equivalence class w.r.t. \preceq^{T} step increase k

$the \ algorithm$

init set $R_0^n = \{\emptyset\}$ and k = 0 *repeat until* k > 1 and $|R_k^n| = 1$ *generate* N_{k+1}^n extend each net in R_k^n by one comparator in all possible ways *prune to* R_{k+1}^n keep only one element from each minimal equivalence class w.r.t. \preceq^T *step* increase k

pruning

- quadratic step
- inner loop searches among all permutations typically fails
- record successful subsumptions

$the \ algorithm$

init set $R_0^n = \{\emptyset\}$ and k = 0*repeat* until k > 1 and $|R_k^n| = 1$ generate N_{k+1}^n extend each net in R_k^n by one comparator in all possible ways *prune to* R_{k+1}^n keep only one element from each minimal equivalence class w.r.t. \prec^{T} step increase k certified checker using recorded subsumptions as an oracle replace pruning cycle by oracle calls skeptic approach towards oracle use program extraction verifies all cases up to s_8 , requires ~ 18 years for s_9 ...

checker soundness

```
Definition Oracle := list (comp_net * comp_net * (list nat)).
Inductive Answer : Set :=
  | ves : nat -> nat -> Answer
  | no : forall n k:nat, forall R:list comp_net,
         NoDup R ->
         (forall C. In C R \rightarrow length C = k) \rightarrow
         (forall C, In C R \rightarrow standard n C) \rightarrow Answer
  | maybe : Answer.
Fixpoint Generate_and_Prune (n k:nat) (0:list Oracle) :
   Answer.
Theorem GP_no : forall n k O R HRO HR1 HR2,
   Generate and Prune n k O = no n k R HRO HR1 HR2 ->
   forall C, sort_net n C \rightarrow length C > k.
Theorem GP_yes : forall n k 0 m,
   Generate_and_Prune n k 0 = \text{yes n m} \rightarrow
  (forall C, sort_net n C -> length C >= m) /\
   exists C, sort_net n C /\ length C = m.
```

outline

(中) (문) (문) (문) (문)

sorting networks in a nutshell

sorting networks, cog style

generate-andprune

conclusions & future work

$conclusions \ {\it \ensuremath{\mathcal E}} \ future \ work$

results

- theory of optimal-size sorting networks
- formal verification of exact values of s_n for $n \le 8$
 - optimizations to the checker allowed verification of s_9

 $next\ episodes$

formal proof of van voorhis' $s_n \ge s_{n-1} + \lg(n)$ to obtain s_{10}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- other problems in sorting networks
- improvements to extraction

thank you!