a turing-complete choreography calculus

luís cruz-filipe

(joint work with fabrizio montesi)
department of mathematics and computer science
university of southern denmark
amílcar sernadas festschrift
april 23th, 2016

outline

the zoo of communication

communication

 3 computationpractical
consequences

models of communicating systems

process calculi π-calculus and its variants

- low-level modeling of communication
- too technical for many purposes
- many interesting fragments are undecidable

models of communicating systems

process calculi
π-calculus and its variants

- low-level modeling of communication
- too technical for many purposes
- many interesting fragments are undecidable
choreographies
global view of the system
- directed communication (from alice to bob)
- deadlock-free by design
- compilable to process calculi
choreographies and computation
\rightsquigarrow trivially turing-complete (arbitrary computation at each process)
choreographies and computation
\rightsquigarrow trivially turing-complete (arbitrary computation at each process)
\rightsquigarrow typically geared towards applications (many complex primitives)

choreographies and computation

\rightsquigarrow trivially turing-complete (arbitrary computation at each process)
\rightsquigarrow typically geared towards applications (many complex primitives)
focus communication

- reduce local computation to a minimum
- reduce system primitives to a minimum
- how far can we go?

choreographies and computation

$\rightsquigarrow \quad$ trivially turing-complete (arbitrary computation at each process)
$\rightsquigarrow \quad$ typically geared towards applications (many complex primitives)
focus communication

- reduce local computation to a minimum
- reduce system primitives to a minimum
- how far can we go?
π-calculus direct encoding of λ-calculus is unsatisfactory
- counter-intuitive notion of computation
- data and programs at the same level

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

focus of this talk:

- minimal choreographies
- their turing completeness

outline

the zoo of communication
communication
\& computation

practical

conseanences

typical primitives in choreographies

- termination
- message passing
- label selection
- conditionals
- recursion
- process creation
- channel creation
- channel passing
- role assignment

typical primitives in choreographies

- termination
- message passing
- label selection
- conditionals
- recursion
- process creation
- channel creation
- channel passing
- role assignment
- termination
- message passing
- label selection
- conditionals
- recursion
- process creation
- channel creation
- channel passing
- role assignment

minimal choreographies

minimal choreographies

$$
\begin{aligned}
& M::= \mathbf{0}|\eta ; M| \text { if }(\mathrm{p} . \mathbf{c}=\mathrm{q} \cdot \mathbf{c}) \text { then } M_{1} \text { else } M_{2} \\
& \mid \operatorname{def} X=M_{2} \text { in } M_{1} \mid X \\
& \eta::=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& I::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

minimal choreographies

minimal choreographies

$$
\begin{aligned}
& M::= \mathbf{0}|\eta ; M| \text { if }(\mathrm{p} . \mathbf{c}=\mathrm{q} \cdot \mathbf{c}) \text { then } M_{1} \text { else } M_{2} \\
& \mid \operatorname{def} X=M_{2} \text { in } M_{1} \mid X \\
& \eta::=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& I::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

urm machine classical model of computation

- similar to physical memory
- memory cells store natural numbers
- memory operations: zero, successor, copy
- jump-on-equal

minimal choreographies

minimal choreographies

$$
\begin{aligned}
& M::= \mathbf{0}|\eta ; M| \text { if }(\mathrm{p} . \mathbf{c}=\mathrm{q} \cdot \mathbf{c}) \text { then } M_{1} \text { else } M_{2} \\
& \mid \operatorname{def} X=M_{2} \text { in } M_{1} \mid X \\
& \eta::=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& I::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

urm machine classical model of computation

- similar to physical memory
- memory cells store natural numbers \rightsquigarrow processes
- memory operations: zero, successor, copy
- jump-on-equal \rightsquigarrow conditional

minimal choreographies

minimal choreographies

$$
\begin{aligned}
& M::= \mathbf{0}|\eta ; M| \text { if }(\mathrm{p} . \mathbf{c}=\mathrm{q} . \mathbf{c}) \text { then } M_{1} \text { else } M_{2} \\
& \mid \operatorname{def} X=M_{2} \text { in } M_{1} \mid X \\
& \eta::=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& I::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

but. . .! very different computation model

- no centralized control
- no self-change

minimal choreographies

minimal choreographies

$$
\begin{aligned}
& M::=\mathbf{0}|\eta ; M| \text { if }(\mathrm{p} . \mathbf{c}=\mathrm{q} \cdot \mathbf{c}) \text { then } M_{1} \text { else } M_{2} \\
& \\
& \\
& \quad \mid \operatorname{def} X=M_{2} \text { in } M_{1} \mid X \\
& I:=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& |::=\mathrm{L}| \mathrm{R} \\
& e::=\varepsilon|\mathbf{c}| \mathbf{s} \cdot \mathbf{c}
\end{aligned}
$$

on selections

- not needed for computational completeness
- essential (?) for projectability (e.g. to π-calculus)
- known algorithms for inferring selections
implementation of functions
state a state of an minimal choreography is a mapping from the set of process names to the set of values
state a state of an minimal choreography is a mapping from the set of process names to the set of values
implementation choreography M implements $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ with inputs p_{1}, \ldots, p_{n} and output q if:
for every σ such that $\sigma\left(p_{i}\right)=\left\ulcorner x_{i}\right\urcorner$,
- if $f(\tilde{x})$ is defined, then $M, \sigma \rightarrow^{*} \mathbf{0}, \sigma^{\prime}$ and $\sigma^{\prime}(q)=\ulcorner f(\tilde{x})\urcorner$
- if $f(\tilde{x})$ is not defined, then $M, \sigma \nrightarrow^{*} \mathbf{0}$ (diverges)
an example: addition
addition $\operatorname{def} X=$
from p, q to r using t

$$
\begin{aligned}
& \text { if }(r . \mathbf{c}=\text { q. } \mathbf{c}) \text { then } \\
& \quad \text { p.c } \rightarrow r ; \mathbf{0} \\
& \text { else }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p} . \mathrm{c} \rightarrow \mathrm{t} ; \mathrm{t} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{p} ; \\
& \mathrm{r} . \mathbf{c} \rightarrow \mathrm{t} ; \mathrm{t} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{r} ; X
\end{aligned}
$$

$$
\text { int. } \varepsilon \rightarrow \mathrm{r} ; X
$$

from p, q to r using t

addition $\operatorname{def} X=$

$$
\begin{aligned}
& \text { if }(r . \mathbf{c}=q . \mathbf{c}) \text { then } \\
& \quad \text { p.c } \rightarrow r ; \mathbf{0} \\
& \text { else }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p} . \mathbf{c} \rightarrow \mathrm{t} ; \mathrm{t} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{p} ; \\
& \mathrm{r} . \mathbf{c} \rightarrow \mathrm{t} ; \mathrm{t} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{r} ; X
\end{aligned}
$$

in $\mathrm{t} . \varepsilon \rightarrow \mathrm{r} ; X$
\rightsquigarrow does not compile!

- projection of p does not know whether to send a message to r or t
- projection of t does not know whether to wait for a message or terminate

$$
\begin{aligned}
& \text { addition } \operatorname{def} X= \\
& \text { from } \mathrm{p}, \mathrm{q} \text { to } \mathrm{r} \\
& \text { using } \mathrm{t} \\
& \text { if }(\mathrm{r} . \mathbf{c}=\mathrm{q} . \mathbf{c}) \text { then } \mathrm{r} \rightarrow \mathrm{p}[\mathrm{~L}] ; \mathrm{r} \rightarrow \mathrm{q}[\mathrm{~L}] ; \mathrm{r} \rightarrow \mathrm{t}[\mathrm{~L}] \text {; } \\
& \text { p. } \mathbf{C} \rightarrow \mathbf{r} \mathbf{0} \\
& \text { else } r \rightarrow p[R] ; r \rightarrow q[R] ; r \rightarrow t[R] ; \\
& \mathrm{p} . \mathrm{c} \rightarrow \mathrm{t} ; \mathrm{t} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{p} \text {; } \\
& \mathrm{r} . \mathbf{c} \rightarrow \mathrm{t} ; \mathrm{t} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{r} ; X \\
& \text { in t. } \varepsilon \rightarrow \mathrm{r} ; X
\end{aligned}
$$

\rightsquigarrow does not compile!

- projection of p does not know whether to send a message to r or t
- projection of t does not know whether to wait for a message or terminate
addition $\operatorname{def} X=$
from p, q to r using t

$$
\begin{aligned}
& \text { if }(\mathrm{r} . \mathbf{c}=\mathrm{q} . \mathbf{c}) \text { then } \mathrm{r} \rightarrow \mathrm{p}[\mathrm{~L}] ; \mathrm{r} \rightarrow \mathrm{q}[\mathrm{~L}] ; \mathrm{r} \rightarrow \mathrm{t}[\mathrm{~L}] ; \\
& \quad \mathrm{p} . \mathbf{c} \rightarrow \mathrm{r} ; \mathbf{0} \\
& \text { else } \mathrm{r} \rightarrow \mathrm{p}[\mathrm{R}] ; \mathrm{r} \rightarrow \mathrm{q}[\mathrm{R}] ; \mathrm{r} \rightarrow \mathrm{t}[\mathrm{R}] ; \\
& \quad \text { p.c } \rightarrow \mathrm{t} ; \mathrm{t} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{p} ; \\
& \quad \mathrm{r} . \mathbf{c} \rightarrow \mathrm{t} ; \mathrm{t} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{r} ; X
\end{aligned}
$$

$$
\text { int. } \varepsilon \rightarrow \mathrm{r} ; X
$$

\rightsquigarrow compiles!

- projections of p and t wait for notification from r projection of q also needs to be notified

partial recursive functions $i / v i$

$S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(x)=x+1$ for all x

partial recursive functions $i / v i$

successor
$S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(x)=x+1$ for all x
implementation

$$
\llbracket S \rrbracket^{p \mapsto q}=\mathrm{p} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{q}
$$

partial recursive functions $i / v i$

successor
$S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(x)=x+1$ for all x
implementation

$$
\llbracket S \rrbracket^{p \mapsto q}=\mathrm{p} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{q}
$$

soundness

$$
\text { p. }(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{q},\{\mathrm{p} \mapsto\ulcorner x\urcorner\} \longrightarrow \mathbf{0},\left\{\begin{array}{l}
\mathrm{p} \mapsto\ulcorner x\urcorner \\
\mathrm{q} \mapsto\ulcorner x+1\urcorner
\end{array}\right\}
$$

partial recursive functions ii/vi

$Z: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(x)=0$ for all x
implementation

$$
\llbracket Z \rrbracket^{\mathrm{p} \mapsto \mathrm{q}}=\mathrm{p} \cdot \varepsilon \rightarrow \mathrm{q}
$$

soundness

$$
\mathrm{p} . \varepsilon \rightarrow \mathrm{q},\{\mathrm{p} \mapsto\ulcorner x\urcorner\} \longrightarrow \mathbf{0},\left\{\begin{array}{l}
\mathrm{p} \mapsto\ulcorner\mathrm{x}\urcorner \\
\mathrm{q} \mapsto\ulcorner\mathrm{p}\urcorner
\end{array}\right\}
$$

projections implementation $P_{m}^{n}: \mathbb{N} \rightarrow \mathbb{N}$ such that $P_{m}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{m}$ for all \tilde{x}

$$
\llbracket P_{m}^{n} \rrbracket^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=\mathrm{p}_{\mathrm{m}} \cdot \mathbf{c} \rightarrow \mathrm{q}
$$

soundness

$$
\mathrm{p}_{\mathrm{m}} \cdot \mathbf{c} \rightarrow \mathrm{q},\left\{\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner\right\} \longrightarrow \mathbf{0},\left\{\begin{array}{l}
\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner \\
\mathrm{q} \mapsto\left\ulcorner x_{m}\right\urcorner
\end{array}\right\}
$$

$\rightsquigarrow \quad$ properties we use in inductive constructions

- execution preserves contents of input processes
- all choreographies have exactly one exit point (occurrence of $\mathbf{0}$)
$\rightsquigarrow \quad$ properties we use in inductive constructions
- execution preserves contents of input processes all choreographies have exactly one exit point (occurrence of $\mathbf{0}$)
sequential composition
for processes with only one exit point $M \circ M^{\prime}$ is obtained by replacing 0 (in M) by M^{\prime}
$\rightsquigarrow \quad$ properties we use in inductive constructions
- execution preserves contents of input processes
- all choreographies have exactly one exit point (occurrence of $\mathbf{0}$)
sequential for processes with only one exit point composition $M \circ M^{\prime}$ is obtained by replacing 0 (in M) by M^{\prime}
$\rightsquigarrow \quad$ works as expected
■ if $M, \sigma \rightarrow^{*} \mathbf{0}, \sigma^{\prime}$ and $M^{\prime}, \sigma^{\prime} \rightarrow^{*} \mathbf{0}, \sigma^{\prime \prime}$, then $M ; M^{\prime}, \sigma \rightarrow^{*} \mathbf{0}, \sigma^{\prime \prime}$
- if $M, \sigma \rightarrow^{*} \mathbf{0}, \sigma^{\prime}$ and $M^{\prime}, \sigma^{\prime}$ diverges, then $M ; M^{\prime}, \sigma$ diverges
- if M, σ diverges, then $M ; M^{\prime}, \sigma \rightarrow \mathbf{0}, \sigma^{\prime \prime}$ diverges

partial recursive functions iv/vi

composition

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right)
\end{array}
$$

partial recursive functions iv/vi

composition
implementation

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right) \\
& \\
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{p_{1}, \ldots, p_{n} \mapsto \mathrm{q}}= & \llbracket g_{1} \rrbracket_{\ell_{1}}^{p_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} \circ \ldots \circ \\
& \llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{k}}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, \mathrm{r}_{k}^{\prime} \mapsto \mathrm{q}}
\end{array}
$$

partial recursive functions iv/vi

composition
implementation

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right) \\
& \\
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{p_{1}, \ldots, p_{n} \mapsto \mathrm{q}}= & \llbracket g_{1} \rrbracket_{\ell_{1}}^{p_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} \circ \ldots \circ \\
& \llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{k}}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, \mathrm{r}_{k}^{\prime} \mapsto \mathrm{q}}
\end{array}
$$

$\rightsquigarrow \quad r_{i}^{\prime}$ are auxiliary processes numbered from $\ell: r_{i}^{\prime}=r_{\ell+i-1}$ in recursive calls we increment the counter:
$\ell_{i+1}=\ell_{i}+\pi\left(g_{i}\right)$

partial recursive functions iv/vi

composition
implementation
soundness

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right)
\end{array}
$$

$$
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{\mathbf{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=\llbracket g_{1} \rrbracket_{\ell_{1}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} ; \ldots \circ
$$

$$
\llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{n} \mapsto r_{k}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{\mathrm{r}_{1}^{\prime}, \ldots, r_{k}^{\prime} \mapsto \mathrm{q}}
$$

$$
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}},\left\{\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner\right\}
$$

$$
\longrightarrow^{*} \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, r_{k}^{\prime} \mapsto \mathrm{q}},\left\{\begin{array}{l}
\mathrm{p}_{i} \mapsto\left\ulcorner x_{i}\right\urcorner \\
\mathrm{r}_{\mathrm{j}}^{\prime} \mapsto\left\ulcorner g_{j}(\tilde{x})\right\urcorner
\end{array}\right\}
$$

partial recursive functions iv/vi

composition
implementation
soundness

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right)
\end{array}
$$

$$
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{\mathbf{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=\llbracket g_{1} \rrbracket_{\ell_{1}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} ; \ldots \circ
$$

$$
\llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{n} \mapsto r_{k}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{\mathrm{r}_{1}^{\prime}, \ldots, r_{k}^{\prime} \mapsto \mathrm{q}}
$$

$$
\begin{aligned}
& \llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}},\left\{\begin{array}{l}
\left.\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner\right\} \\
\longrightarrow \\
\longrightarrow^{*} \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, \mathrm{r}_{\mathrm{k}}^{\prime} \mapsto \mathrm{q}},\left\{\begin{array}{l}
\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner \\
\mathrm{r}_{\mathrm{j}}^{\prime} \mapsto\left\ulcorner g_{j}(\tilde{x})\right\urcorner
\end{array}\right\} \\
\longrightarrow * \mathbf{0},\left\{\begin{array}{l}
\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner \\
\mathrm{r}_{\mathrm{j}}^{\prime} \mapsto\left\ulcorner g_{j}(\tilde{x})\right\urcorner \\
\mathrm{q} \mapsto\ulcorner(\tilde{(\tilde{x}))\urcorner}
\end{array}\right\}
\end{array} .\right.
\end{aligned}
$$

partial recursive functions iv/vi

composition
implementation
soundness

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right) \\
& \\
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{p_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}= & \llbracket g_{1} \rrbracket_{\ell_{1}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} \circ \ldots \circ \\
& \llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{k}}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, \mathrm{r}_{k}^{\prime} \mapsto \mathrm{q}}
\end{array}
$$

if $g_{j}(\tilde{x})$ is undefined the corresponding step diverges and likewise for $f(\widetilde{g(\tilde{x})})$
partial recursive functions $v / v i$
recursion

$$
\begin{aligned}
& f: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad g: \mathbb{N}^{n+2} \rightarrow \mathbb{N} \\
& h=R(f, g): \mathbb{N}^{n+1} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \begin{cases}f(\vec{x}) & x_{0}=0 \\
g(k, h(k, \tilde{x}), \tilde{x}) & x_{0}=k+1\end{cases}
\end{aligned}
$$

partial recursive functions $v / v i$

$$
\begin{aligned}
& f: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad g: \mathbb{N}^{n+2} \rightarrow \mathbb{N} \\
& h=R(f, g): \mathbb{N}^{n+1} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \begin{cases}f(\vec{x}) & x_{0}=0 \\
g(k, h(k, \tilde{x}), \tilde{x}) & x_{0}=k+1\end{cases}
\end{aligned}
$$

implementation

$$
\begin{aligned}
& \llbracket h \rrbracket^{\mathrm{p}_{0}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}= \\
& \quad \operatorname{def} T=\text { if } \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c}=\mathrm{p}_{0} \cdot \mathbf{c} \text { then } \mathrm{q}^{\prime} \cdot \mathbf{c} \rightarrow \mathrm{q} ; \mathbf{0} \\
& \quad \text { else } \llbracket g \rrbracket_{\ell_{g}}^{\mathrm{r}_{\mathrm{c}}, \mathbf{q}^{\prime}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{t}}} ; \mathrm{r}_{\mathrm{t}} \cdot \mathbf{c} \rightarrow \mathrm{q}^{\prime} ; \\
& \quad \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c} \rightarrow \mathrm{r}_{\mathrm{t}} ; \mathrm{r}_{\mathrm{t}} \cdot(\mathrm{~s} \cdot \mathbf{c}) \rightarrow \mathrm{r}_{\mathrm{c}} ; T
\end{aligned} \quad \begin{aligned}
& \text { in } \llbracket f \rrbracket_{\ell_{f}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}^{\prime}} ; \mathrm{r}_{\mathrm{t}} \cdot \varepsilon \rightarrow \mathrm{r}_{\mathrm{c}} ; T
\end{aligned}
$$

partial recursive functions $v / v i$

$$
\begin{aligned}
& f: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad g: \mathbb{N}^{n+2} \rightarrow \mathbb{N} \\
& h=R(f, g): \mathbb{N}^{n+1} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \begin{cases}f(\vec{x}) & x_{0}=0 \\
g(k, h(k, \tilde{x}), \tilde{x}) & x_{0}=k+1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket h \rrbracket^{\mathrm{p}_{0}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}= \\
& \quad \operatorname{def} T=\text { if } \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c}=\mathrm{p}_{0} \cdot \mathbf{c} \text { then } \mathrm{q}^{\prime} \cdot \mathbf{c} \rightarrow \mathrm{q} ; \mathbf{0} \\
& \quad \text { else } \llbracket g \rrbracket_{\ell_{g}}^{\mathrm{r}_{c}, \mathbf{q}^{\prime}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{t}}} ; \mathrm{r}_{\mathrm{t}} \cdot \mathbf{c} \rightarrow \mathrm{q}^{\prime} ; \\
& \quad \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c} \rightarrow \mathrm{r}_{\mathrm{t}} ; \mathrm{r}_{\mathrm{t}} \cdot(\mathrm{~s} \cdot \mathbf{c}) \rightarrow \mathrm{r}_{\mathrm{c}} ; T
\end{aligned}
$$

soundness by induction (simple)
partial recursive functions vi/vi
$\begin{array}{ll}\text { minimization } \quad f: \mathbb{N}^{n+1} \rightarrow \mathbb{N} \quad & M(f): \mathbb{N}^{n} \rightarrow \mathbb{N} \\ & \tilde{x} \mapsto \mu y \cdot f(\vec{x}, y)=0\end{array}$

$$
\begin{array}{ll}
f: \mathbb{N}^{n+1} \rightarrow \mathbb{N} \quad & M(f): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \mu y \cdot f(\vec{x}, y)=0
\end{array}
$$

implementation
$\llbracket M(f) \rrbracket^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=$ $\operatorname{def} T=\llbracket f \rrbracket_{\ell_{f}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}, \mathrm{r}_{\mathrm{c}} \mapsto \mathrm{q}^{\prime}} ; \mathrm{r}_{\mathrm{c}} . \varepsilon \rightarrow \mathrm{r}_{\mathrm{z}} ;$ if $r_{z} \cdot \mathbf{c}=q^{\prime} . \mathbf{c}$ then $r_{c} \cdot \mathbf{c} \rightarrow q ; \mathbf{0}$ else $r_{c} . \mathbf{c} \rightarrow r_{z} ; r_{z} .(s \cdot \mathbf{c}) \rightarrow r_{c} ; T$ in $r_{z}, \varepsilon \rightarrow r_{c} ; T$

$$
\begin{array}{ll}
f: \mathbb{N}^{n+1} \rightarrow \mathbb{N} \quad & M(f): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \mu y \cdot f(\vec{x}, y)=0
\end{array}
$$

$$
\llbracket M(f) \rrbracket^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=
$$

$$
\operatorname{def} T=\llbracket f \rrbracket_{\ell_{f}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}, \mathrm{r}_{\mathrm{c}} \mapsto \mathrm{q}^{\prime}} ; \mathrm{r}_{\mathrm{c}} . \varepsilon \rightarrow \mathrm{r}_{\mathrm{z}}
$$

$$
\text { if } r_{z} \cdot \mathbf{c}=q^{\prime} \cdot \mathbf{c} \text { then } r_{c} \cdot \mathbf{c} \rightarrow q ; \mathbf{0}
$$

$$
\text { else } \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c} \rightarrow \mathrm{r}_{\mathrm{z}} ; \mathrm{r}_{\mathrm{z}} \cdot(\mathrm{~s} \cdot \mathbf{c}) \rightarrow \mathrm{r}_{\mathrm{c}} ; T
$$

$$
\text { in } \mathrm{r}_{\mathrm{z}} \cdot \varepsilon \rightarrow \mathrm{r}_{\mathrm{c}} ; T
$$

minimality

minimal choreographies

$$
\begin{aligned}
& M::= \mathbf{0}|\eta ; M| \text { if }(\mathrm{p} . \mathbf{c}=\mathrm{q} \cdot \mathbf{c}) \text { then } M_{1} \text { else } M_{2} \\
& \mid \operatorname{def} X=M_{2} \text { in } M_{1} \mid X \\
& \eta::=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& I::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

- no exit points \rightsquigarrow nothing terminates
- no communication \rightsquigarrow no output
- less expressions \rightsquigarrow cannot compute base cases
- no selection \rightsquigarrow not everything is projectable
- no conditions \rightsquigarrow termination is decidable
- no recursion \rightsquigarrow everything terminates

minimality

minimal

$$
\begin{aligned}
& M::=\mathbf{0}|\eta ; M| \text { if }(\mathrm{p} . \mathbf{c}=\mathrm{q} \cdot \mathbf{c}) \text { then } M_{1} \text { else } M_{2} \\
& \mid \operatorname{def} X=M_{2} \text { in } M_{1} \mid X \\
& \eta::=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& I:=\mathrm{L} \mid \mathrm{R} \\
& e:=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

- only zero-testing \rightsquigarrow termination is decidable (skipping proof...)
- only (arbitrary) constant-testing \rightsquigarrow termination is decidable

outline

the zoo of

 communicationcommunication computation
practical
consequences
what we get
sound encoding of partial recursive functions as minimal choreographies
what we get

- sound encoding of partial recursive functions as minimal choreographies
- by embedding into other choreography models \rightsquigarrow sound encoding of partial recursive functions in that model

what we get

- sound encoding of partial recursive functions as minimal choreographies
- by embedding into other choreography models \rightsquigarrow sound encoding of partial recursive functions in that model
- by adding necessary selections (deterministically) \rightsquigarrow sound encoding of partial recursive functions as minimal processes

what we get

- sound encoding of partial recursive functions as minimal choreographies
- by embedding into other choreography models \rightsquigarrow sound encoding of partial recursive functions in that model
- by adding necessary selections (deterministically) \rightsquigarrow sound encoding of partial recursive functions as minimal processes
- by adding necessary selections and embedding into other choreography models \rightsquigarrow sound encoding of partial recursive functions in a process model (in particular, π-calculus)

conclusions

- turing completeness of minimal choreographies
- minimal set of primitives
- identifies a deadlock-free, turing-complete fragment of π-calculus
- core language for studying fundamental properties of choreographies

