
active integrity constraints for
multi-context systems

lúıs cruz-filipe1

(with graça gaspar2, isabel nunes2, peter schneider-kamp1)

1department of mathematics and computer science
university of southern denmark
2department of informatics
faculty of sciences, university of lisbon

ekaw 2016, bologna, italy
november 23rd, 2016



structure

1 motivation

2 the context

3 our formalism

4 evaluation



integrity constraints in reasoning systems

relational dbs the classical setting

deductive dbs mostly mid-1980s
 separate integrity constraints from data
 integrity constraints as preferred models

ontologies last 15–20 years
 open-world semantics makes the problem different
 integrity constraints as terminological axioms
 (but with a different semantics)

heterogeneous
systems

last 10 years
 in multi-context systems (our setting)
 internalize integrity constraints

in general no continuation, no apparent consensus



our goal

generalize existing notions in particular frameworks
(e.g. relational databases)

expressive enough to capture conditions spanning
several systems

decidability? good complexity bounds?

algorithms for repairing inconsistencies

our target active integrity constraints (flesca et al., ’04)

defined for relational databases

allow to express both constraints and repair actions

“good” algorithms for repair

. . . and it’s kind of a nice formalism



our contribution

active integrity constraints in a general-purpose
framework

captures previous constructions as special cases

clean separation between consistency and integrity

including repair actions avoids need for abduction

repairs can be computed automatically
(with a grain of salt)



active integrity constraints
(for databases)

main idea datalog-style rules

body specifies an integrity constraint (clausal, denial
form)

heads are sets of “repair actions” (alternative)

several different semantics

algorithms tree-based algorithms

can compute different kinds of repairs

(non-deterministic) polynomial complexity

sometimes require extra testing (complexity. . . )



multi-context systems

main idea

reasoning systems (“contexts”)

connected by datalog-style rules (“bridge rules”)

brewka & eiter
’07

heterogenous non-monotonic multi-context systems

heterogeneous contexts can use different logics

non-monotonic bridge rules can contain negation

multi-context several different systems

equilibrium an equilibrium is a set of beliefs that is compatible with
all knowledge bases and bridge rules

 think logic programming. . .



ontologies

in particular, we can view an ontology as an mcs

the a-box is one context

the t-box is another context

there are bridge rules injecting all instances from the
a-box to the t-box

equilibria are sets all queries that return true

 separation between a-box and t-box is useful for some
types of integrity constraints



active integrity constraints

syntax an active integrity constraint is written as a bridge rule
with disjunctive head

validity actions on the head must satisfy some constraints

for every action, there is an inconsistent state it repairs

for every inconsistent state, there is an action that
repairs it

 validity is undecidable in general, arguably simple in
practice



evaluation

capture all classes of ontology integrity constraints from
a 2013 survey

are able to define actions for their heads and show
validity

examples in paper, but approach is systematic

also discuss some other types of ontology integrity
constraints



some examples

specific type
constraints

(A:gradStudent(X)),(A:student(X))
=⇒ (A:del(student(X)))

property
domain

constraints

(T: enrolled(X,Y), not (T: student(Y))
=⇒ (A: add(student(Y)))

functional
dependencies

(A:hasEmail(X,Z)),(A:hasEmail(Y,Z)),not (T:(X=Y))
=⇒ (A:del(hasEmail(X,Z))) | (A:assert(X=Y))

minimum
cardinality
constraints

(T:(≤ 10.enrolled)(X))
=⇒ (A:redistribute(¬class(X)))



thank you!


	motivation
	formalism
	our proposal
	evaluation

