
connectors meet choreographies

lúıs cruz-filipe

(with farhad arbab, sung-shik jongmans and fabrizio montesi)

department of mathematics and computer science
university of southern denmark

talks@di
march 31st, 2017



a motivating example

two-buyer
protocol

alice wants to buy a book from a seller

alice sends the title to the seller

the seller replies to alice and her bank with the price

alice tells her bank how much she wants to pay

the bank checks whether alice has enough funds

in the affirmative case, the bank confirms and the seller
sends the book to alice
otherwise, the bank rejects the transaction



outline

three paradigms
for concurrency

cho-reo-
graphies

conclusions



process calculi

π-calculus the canonical model

low-level model of communication

local implementations of concurrent processes

many interesting fragments are undecidable

communication

based on channels and/or sessions

synchronous/asynchronous

one-to-one, one-to-many, many-to-one

. . . but typically homogeneous



process calculi

π-calculus the canonical model

low-level model of communication

local implementations of concurrent processes

many interesting fragments are undecidable

communication

based on channels and/or sessions

synchronous/asynchronous

one-to-one, one-to-many, many-to-one

. . . but typically homogeneous



choreographic programming

origin theory follows practice

inspired by common practice

global, high-level views of systems

formally similar to types for π-calculus

choreographies a different programming paradigm

directed communication (from alice to bob)

deadlock-freedom by design

correct compilation to process calculi

communication

abstract formulation, implemented as before

same variants, same considerations



choreographic programming

origin theory follows practice

inspired by common practice

global, high-level views of systems

formally similar to types for π-calculus

choreographies a different programming paradigm

directed communication (from alice to bob)

deadlock-freedom by design

correct compilation to process calculi

communication

abstract formulation, implemented as before

same variants, same considerations



choreographic programming

origin theory follows practice

inspired by common practice

global, high-level views of systems

formally similar to types for π-calculus

choreographies a different programming paradigm

directed communication (from alice to bob)

deadlock-freedom by design

correct compilation to process calculi

communication

abstract formulation, implemented as before

same variants, same considerations



exogenous coordination

focus separation of concerns

focus on communication structures

processes communicate only through ports

message flow is defined by a communication medium

communication
media

the focus of the paradigm:
how do messages flow between ports?

a common language: Reo

30+ different semantics

in this work: communication automata



exogenous coordination

focus separation of concerns

focus on communication structures

processes communicate only through ports

message flow is defined by a communication medium

communication
media

the focus of the paradigm:
how do messages flow between ports?

a common language: Reo

30+ different semantics

in this work: communication automata



our goal

 combine choreographies with connectors

keep separation of concerns

choreographies interact with connectors

. . . but they are independent

notion of compatibility

two-flavored semantics



our goal

 combine choreographies with connectors

keep separation of concerns

choreographies interact with connectors

. . . but they are independent

notion of compatibility

two-flavored semantics



our goal

 combine choreographies with connectors

keep separation of concerns

choreographies interact with connectors

. . . but they are independent

notion of compatibility

two-flavored semantics



outline

three paradigms
for concurrency

cho-reo-
graphies

conclusions



a minimalist model

proof of principle

turing completeness

good decidability properties

allows us to understand the typical problems



syntax

the calculus C ::= 0 (termination)

| η̃ thru γ;C (communication)

| if (p.e) thenC1 elseC2 (choice)

| def X = C2 inC1 (recursion)

| X (call)

η ::= p.e → q (value)

| p→ q[`] (label)

` ∈ a non-singleton finite set

e ∈ a suitable language



semantics (i/iii)

processes standard choreography semantics

state assigns a value to each process

transition semantics

communications ruled by external parameter

runtime terms for incomplete communications

swapping of independent actions

connectors constraint automata define possible communications

one automaton per communication medium

internal state partially replicated in runtime
choreographies



semantics (i/iii)

processes standard choreography semantics

state assigns a value to each process

transition semantics

communications ruled by external parameter

runtime terms for incomplete communications

swapping of independent actions

connectors constraint automata define possible communications

one automaton per communication medium

internal state partially replicated in runtime
choreographies



semantics (ii/iii)

 the communication rule

∅ 6= P ⊆ ports(η̃) A(γ)1
P, φ−−→γ s ′

A(γ)2
σ, φ−−→γ µ

′ φ ∗µ η̃
η̃ thru γ;C , σ,A G P(η̃) thru γ;C , φ(σ),A[γ 7→ 〈s ′, µ′〉]

ports(η̃) is the set of ports derived from η̃

φ(σ) denotes the result of updating σ according to the
interactions that were completed

P(η̃) contains the unfinished/unexecuted
communications in η̃

φ ∗µ η̃ expresses that φ and η̃ agree on the messages in
transit



semantics (iii/iii)

an example G(γ) allows p and r to send simultaneously to q and s,
who then can receive the messages in any order

possible
reduction path

η : p.1→ q
r.2→ s

σ : q 7→ 0
s 7→ 0

s : s0

µ : µ0



semantics (iii/iii)

an example G(γ) allows p and r to send simultaneously to q and s,
who then can receive the messages in any order

possible
reduction path

η : p.1→ q
r.2→ s

σ : q 7→ 0
s 7→ 0

s : s0

µ : µ0



semantics (iii/iii)

an example G(γ) allows p and r to send simultaneously to q and s,
who then can receive the messages in any order

possible
reduction path

η : p.1→ q 1→ q
r.2→ s 2→ s

σ : q 7→ 0 q 7→ 0
s 7→ 0 s 7→ 0

s : s0 s1

µ : µ0 mpq 7→ 1
mrs 7→ 2



semantics (iii/iii)

an example G(γ) allows p and r to send simultaneously to q and s,
who then can receive the messages in any order

possible
reduction path

η : p.1→ q 1→ q 1→ q
r.2→ s 2→ s

σ : q 7→ 0 q 7→ 0 q 7→ 0
s 7→ 0 s 7→ 0 s 7→ 2

s : s0 s1 s2

µ : µ0 mpq 7→ 1 mpq 7→ 1
mrs 7→ 2 mrs 7→ 2



semantics (iii/iii)

an example G(γ) allows p and r to send simultaneously to q and s,
who then can receive the messages in any order

possible
reduction path

η : p.1→ q 1→ q 1→ q 0
r.2→ s 2→ s

σ : q 7→ 0 q 7→ 0 q 7→ 0 q 7→ 1
s 7→ 0 s 7→ 0 s 7→ 2 s 7→ 2

s : s0 s1 s2 s0

µ : µ0 mpq 7→ 1 mpq 7→ 1 mpq 7→ 1
mrs 7→ 2 mrs 7→ 2 mrs 7→ 2



the swap relation

we can permute independent communications:

on different connectors and different processes

pn(η̃) ∩ pn(η̃′) = ∅ γ 6= γ′(
η̃ thru γ; η̃′ thru γ′

)
≡
(
η̃′ thru γ′; η̃ thru γ

) bC|Eta-Etae

on the same connector

pn(η̃1) ∩ pn(η̃2) = ∅
(η̃1 thru γ; η̃2 thru γ) ≡ (η̃1 ∪ η̃2) thru γ

bC|Eta-Splite

combining these, we obtain interleaving



the swap relation

we can permute independent communications:

on different connectors and different processes

pn(η̃) ∩ pn(η̃′) = ∅ γ 6= γ′(
η̃ thru γ; η̃′ thru γ′

)
≡
(
η̃′ thru γ′; η̃ thru γ

) bC|Eta-Etae

on the same connector

pn(η̃1) ∩ pn(η̃2) = ∅
(η̃1 thru γ; η̃2 thru γ) ≡ (η̃1 ∪ η̃2) thru γ

bC|Eta-Splite

combining these, we obtain interleaving



the swap relation

we can permute independent communications:

on different connectors and different processes

pn(η̃) ∩ pn(η̃′) = ∅ γ 6= γ′(
η̃ thru γ; η̃′ thru γ′

)
≡
(
η̃′ thru γ′; η̃ thru γ

) bC|Eta-Etae

on the same connector

pn(η̃1) ∩ pn(η̃2) = ∅
(η̃1 thru γ; η̃2 thru γ) ≡ (η̃1 ∪ η̃2) thru γ

bC|Eta-Splite

combining these, we obtain interleaving



deadlock freedom

possible problem communication rule can fail to be applicable

with reasonable assumptions, detecting this is
undecidable

solution more restrictive compatibility relation

ignore swap

symbolic execution

always consider both branches in choices

require recursive calls to be uniform

 decidable, reasonable assumptions in practice

incomplete def X = p.e → q thru γ; r.e → s thru γ;X inX

where G(γ) allows (only) alternating one communication
from p to q with two communications from r to s



deadlock freedom

possible problem communication rule can fail to be applicable

with reasonable assumptions, detecting this is
undecidable

solution more restrictive compatibility relation

ignore swap

symbolic execution

always consider both branches in choices

require recursive calls to be uniform

 decidable, reasonable assumptions in practice

incomplete def X = p.e → q thru γ; r.e → s thru γ;X inX

where G(γ) allows (only) alternating one communication
from p to q with two communications from r to s



deadlock freedom

possible problem communication rule can fail to be applicable

with reasonable assumptions, detecting this is
undecidable

solution more restrictive compatibility relation

ignore swap

symbolic execution

always consider both branches in choices

require recursive calls to be uniform

 decidable, reasonable assumptions in practice

incomplete def X = p.e → q thru γ; r.e → s thru γ;X inX

where G(γ) allows (only) alternating one communication
from p to q with two communications from r to s



projection

as usual in choreography languages, we can project our
choreographies to process implementations

target language a variant of π-calculus

primitives “input from port p” and “output to port p”
(rather than e.g. channels)

semantics uses a set of connectors over the actual ports

similar rule for communication

projection built as standard in choreography calculi
actions are split in their local components

properties operational correspondence (up-to bisimulation)
between choreographies and their projections
 deadlock-freedom by construction



projection

as usual in choreography languages, we can project our
choreographies to process implementations

target language a variant of π-calculus

primitives “input from port p” and “output to port p”
(rather than e.g. channels)

semantics uses a set of connectors over the actual ports

similar rule for communication

projection built as standard in choreography calculi
actions are split in their local components

properties operational correspondence (up-to bisimulation)
between choreographies and their projections
 deadlock-freedom by construction



outline

three paradigms
for concurrency

cho-reo-
graphies

conclusions



conclusions & future work

results

a unifying model integrating choreographic
programming and exogenous coordination

inherits the good properties of both paradigms

what’s next?

relaxing the requirements on the constraint automata to
obtain non-determinism

allow choreographies to underspecify communications to
model open-ended systems

similar combination with multiparty session types



thank you!


	three paradigms for concurrency
	cho-reo-graphies
	conclusions

