the boolean pythagorean triples problem in coq

luís cruz-filipe ${ }^{1}$
(joint work with joão marques-silva ${ }^{2}$ and peter schneider-kamp ${ }^{1}$)
${ }^{1}$ department of mathematics and computer science university of southern denmark
${ }^{2}$ department of informatics faculty of science, university of lisbon
logic and computation seminar, ist, lisbon july 21st, 2017

outline

1 context

2 formalizing the problem

3 verifying unsatisfiability

4 conclusions

outline

1 context

2 formalizing the problem

3 verifying unsatisfiability

4 conclusions
original goal: verifying unsatisfiability

tacas'17

certifying (unsat) results from sat solvers

- enriched trace format
- verification procedure formalized in coq
- correct-by-construction extracted checker
original goal: verifying unsatisfiability

tacas'17

certifying (unsat) results from sat solvers

- enriched trace format
- verification procedure formalized in coq

■ correct-by-construction extracted checker

evaluation

examples from the 2015 and 2016 sat competitions. . .

tacas'17

certifying (unsat) results from sat solvers

- enriched trace format
- verification procedure formalized in coq

■ correct-by-construction extracted checker

evaluation

examples from the 2015 and 2016 sat competitions...
.... and "the large proof ever", because it's there

- unexpected success
the boolean pythagorean triples problem
a problem in ramsey theory
can the natural numbers be colored with two colors such that no pythagorean triple is monochromatic?
the boolean pythagorean triples problem

```
a problem in ramsey theory
```

can the natural numbers be colored with two colors such that no pythagorean triple is monochromatic?

no

heule et al. showed that the finite restriction to $\{1, \ldots, 7825\}$ is already unsolvable

- encoding as a propositional formula
- simplification step
- divide-and-conquer strategy
- one million and one unsatisfiable formulas

outline

1 context

2 formalizing the problem

3 verifying unsatisfiability

4 conclusions

the boolean pythagorean triples problem

definitions

- we use the coq type of (binary) positive numbers
- our "colors" are true and false

Definition coloring := positive -> bool.
Definition pythagorean (a b c:positive) :=a*a $+\mathrm{b} * \mathrm{~b}=\mathrm{c} * \mathrm{c}$.
Definition pythagorean_pos (C:coloring) := forall a b c,

a propositional encoding

Definition Pythagorean_formula (n:nat) := [...]

$$
\bigwedge_{1 \leq a<b<c<n}\left(x_{a} \vee x_{b} \vee x_{c}\right) \wedge\left(\overline{x_{a}} \vee \overline{x_{b}} \vee \overline{x_{c}}\right)
$$

■ (some) direct encoding in functional programming (we first build a list of pythagorean triples)
■ n should be 7826, but it pays off to leave it uninstantiated

a propositional encoding

Definition Pythagorean_formula (n:nat) := [...]

$$
\bigwedge_{1 \leq a<b<c<n}\left(x_{a} \vee x_{b} \vee x_{c}\right) \wedge\left(\overline{x_{a}} \vee \overline{x_{b}} \vee \overline{x_{c}}\right)
$$

■ (some) direct encoding in functional programming (we first build a list of pythagorean triples)
■ n should be 7826, but it pays off to leave it uninstantiated

Parameter TheN : nat.

Definition The_CNF := Pythagorean_formula TheN.

Theorem Pythagorean_Theorem : unsat The_CNF -> forall C, ~pythagorean_pos C.
■ we can extract to ml and recompute the propositional formula

blocked clause elimination (i/ii)

in general

reduce the size of a cnf by eliminating clauses that do not change satisfiability

in this case

if k occurs in exactly one pythagorean triple, then that triple can be removed from the set

- any coloring that makes all remaining triples monochromatic can be trivially extended to k

blocked clause elimination (ii/ii)

```
Fixpoint simplify (t:triples) (l:list positive) := match l with
    | nil => t
    | p::l' => if (one_occurrence_dec p t) then simplify (remove_number p t) l'
        else simplify t l'
    end.
Definition simplified_Pythagorean_formula (n:nat) (l:list positive) := [...]
Parameter The_List : list positive.
Definition The_Simple_CNF := simplified_Pythagorean_formula TheN The_List.
Theorem simplification_ok : unsat The_CNF <-> unsat The_Simple_CNF.
```

- The_List is instantiated by a concrete list built from the trace of heule et al.'s proof
the symmetry break (i/ii)

idea

add additional constraints that preserve satisfiability but reduce the number of solutions
("without loss of generality...")

concretely

impose that 2520 is colored true

- nothing magical about 2520
- it just happen to be the number occurring most often

the symmetry break (ii/ii)

Lemma fix_one_color : forall C, pythagorean_pos C -> forall n b, exists C', pythagorean_pos C' $\$ C' $n=b$.

Parameter TheBreak : positive.

Definition The_Asymmetric_CNF := [...]

Theorem symbreak_ok : unsat The_CNF <-> unsat The_Asymmetric_CNF.

■ The_Asymmetric_CNF simply has the extra clause x_{2520}
■ using program extraction we can compute the simplified propositional formula in approx. 35 minutes

outline

1 context

2 formalizing the problem

3 verifying unsatisfiability

4 conclusions

cube-and-conquer

methodology

find a set of partial valuations (the cubes) such that:

- the conjunction of the cnf with each cube is unsatisfiable
- the disjunction of the cubes is a tautology

a perfect balance

cubes are built using heuristics

- replace one big problem with many smaller ones
- need criteria to decide when to stop splitting
- not our problem!
cube-and-conquer, coq style

Definition Cube := list Literal.

Fixpoint Cubed_CNF (F:CNF) (C:Cube) : CNF := [...]

Fixpoint noCube (C:list Cube) : CNF := [...]

Lemma CubeAndConquer_lemma : forall Formula Cubes, (forall c, In c Cubes -> unsat (Cubed_CNF Formula c)) -> unsat (noCube Cubes) -> unsat Formula.

verifying unsatisfiability

reverse unit propagation

we use an oracle containing lines of the form

$$
\varphi, i_{1}, \ldots, i_{k}
$$

- for each line, we check that φ follows from the current formula and add it
- we only allow reverse unit propagation, applying the clauses with indices i_{1}, \ldots, i_{k} in sequence

reverse unit propagation

we use an oracle containing lines of the form

$$
\varphi, i_{1}, \ldots, i_{k}
$$

- for each line, we check that φ follows from the current formula and add it
- we only allow reverse unit propagation, applying the clauses with indices i_{1}, \ldots, i_{k} in sequence

■ these are obtained from the 200 TB in heule et al.'s proof

- preprocessing yields the indices i_{1}, \ldots, i_{k}, which are the key to scalability
■ the total size of the proof witnesses is nearly 400 TB

outline

1 context

2 formalizing the problem

3 verifying unsatisfiability

4 conclusions

- formally verified unsolvability of the boolean pythagorean triples problem
- stronger claim for the mathematical result

■ formal generation of the propositional encoding

- formal verification of the simplification process
- general certified framework for validation of proofs by cube-and-conquer
- general certified framework for unsatisfiability proofs (extended to a more expressive format, accepted at cade-26)

thank you!

