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historical overview

how it all started

a problem in sorting networks

how many compare-and-swap gates are needed to construct a
circuit that sorts any n inputs?

deceptively simple

known solutions for n ≤ 8 since the 1960s
(knuth & floyd + van voorhis)

solved for n = 9 (corollary: n = 10) in 2014
(codish, lcf, frank & psk @ ictai’14)

 computed by an ad-hoc prolog program, made some people
unhappy
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making more people happy

a formalized coq proof (lcf & psk @ itp’15)

directly reimplement prolog code in coq, prove its soundness

use an oracle to skip expensive search steps

directly verified all cases up to n = 8

massive optimizations (lcf & psk @ cicm’15)

use extra information about properties of the oracle

modify the oracle to optimize performance

verified also n = 9
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a methodology?

the interesting question

can we generalize this?

yes?

abstract main ideas, propose a general methodology
(lcf, larsen & psk @ jar, accepted)

folklore

generalization not in the accepted version

“trivial ideas”, “folklore”, “common knowledge”

missing a formal evaluation
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a new application

unsat verification (lcf, marques-silva & psk @ tacas’16)

goal: blindly follow the methodology

 in direct conflict with previous approaches

a huge surprise

prototype after two days (up to 30× slower than drat-trim)

significant increase to state-of-the-art

one week after preprint: two independent replications

at cade’17: three extensions to more expressive format
coq and acl2 (lcf, heule, hunt, kaufmann & psk)
isabelle (lammich)
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the proofs we verified

optimal sorting networks (i/ii)

sorting networks

a comparator network on n inputs is a sequence of
compare-and-swap gates, represented as pairs 〈i , j〉 with
1 ≤ i < j ≤ n

a gate 〈i , j〉 acts on an input x̄ ∈ {0, 1}n by exchanging xi and
xj if xi > xj

a sorting network on n inputs is a comparator network that
sorts all inputs in {0, 1}n

a sorting network is (size-)optimal if there is no shorter sorting
network on the same number of inputs
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the proofs we verified

optimal sorting networks (ii/ii)

finding optimal sorting networks

the generate-and-prune method

start from the empty sequence

add one comparator in all possible ways

remove all networks N such that ∃N ′∃π.N ′ ≤π N

 details of the subsumption relation N ′ ≤ N are immaterial
(but note existential quantifiers)
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the proofs we verified

propositional unsatisfiability

the problem

given a propositional formula in cnf, show that it is unsatisfiable

usual techniques

add clauses that are logical consequences of the cnf

add clauses that are redundant (preserve satisfiability)

derive the empty clause
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methodology: the three conditions

existential subproblems

requirement

proof includes problems of the form ∃X .ϕ, with X hard to find

sorting networks

networks to be removed

justifications for removal

unsatisfiability proofs

clauses to be added

justifications for additions

 suggests using an oracle
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methodology: the three conditions

data dependency

requirement

proof’s structure depends on the answers computed along the way

sorting networks

there are several possibilities, e.g.
N ≤π N ′ and N ′ ≤π′ N or N1 ≤π1 N2 ≤π2 N3

order affects efficiency and future removals

unsatisfiability proofs

adding clauses yields new derivable clauses

removing clauses makes cnf smaller, prevents some derivations

 suggests the performance of the oracle is relevant
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known subproblems

requirement

we can compute all answers before executing the proof

in both cases

the oracle’s information determines future execution

 allows global optimizations of the oracle
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the actual target proof
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formalize

goal

formalize the theory underlying the problem, without focusing on
the actual target proof

sorting networks

theory of sorting networks

closely followed knuth’s reference work + one article about
subsumption

around 2 months’ (low-priority) work
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methodology: the four phases

formalize

goal

formalize the theory underlying the problem, without focusing on
the actual target proof

unsatisfiability proofs

propositional logic

deep encoding in coq

standard definitions (satisfaction, entailment)

around 1/2 day’s work
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methodology: the four phases

implement

goal

implement a straightforward checker using an oracle

sorting networks

follow original prolog code

oracle produces subsumption triples 〈N, π,N ′〉 generated by
the original proof

 can verify optimality for up to 8 inputs
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methodology: the four phases

implement

goal

implement a straightforward checker using an oracle

unsatisfiability proof

based on reverse unit propagation

oracle also indicates which clauses to use in reverse unit
propagation

 can check large unsatisfiability proofs in reasonable time
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target bottlenecks in execution, change oracle and checker in
lockstep to improve efficiency
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methodology: the four phases

optimize and reprove

goal

target bottlenecks in execution, change oracle and checker in
lockstep to improve efficiency

sorting networks

better data structures for searching

rearrange order of subsumptions for list-based search

delay checking of side conditions for better performance

 requires previous knowledge of all subsumptions, as some
justifications have to be changed
 around 1–2 days per change
 able to verify optimality for 9 inputs
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methodology: the four phases

optimize and reprove

goal

target bottlenecks in execution, change oracle and checker in
lockstep to improve efficiency

unsatisfiability proofs

better data structures for storing/analysing cnf

delete clauses as soon as possible

 requires previous knowledge of whole proof to make sure clauses
can be deleted
 changes in data structures harder due to problems with the coq
libraries
 competitive execution times
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conclusions

verification of very large proofs using a coq-certified checker

systematic use of the same methodology

starting to “inspire” other researchers :)
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conclusions

thank you!
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