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a not-so-new trend in mathematics

the 4-color theorem

Appel, Haken and Koch (1977)
traditionally considered “the” birth of the field

more than 10 years before. . .

(Floyd & Knuth, 1973)
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the present day

software and hardware verification

critical systems (testing is not enough)

lots of mechanical, “boring” proofs with lots of (simple) cases

often largely/completely automatic

mathematical results

because we can

proofs in “mathematical style”, typically interactive

“less elegant” proofs by encoding, often automatic
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two styles of proving

ad hoc programs

highly specialized programs check that some property holds
(cf. early examples)

the program must be correct

not always easy to trust

theorem provers

general-purpose programs that can construct/check proofs in a particular logic

we still need to trust the program (but. . . )

the encoding in the logic must be correct
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an example

optimal sorting networks

same domain as Floyd and Knuth, proving S(9) = 25

ad-hoc Prolog program, following “good” practices

independently verified by encoding in propositional logic

algorithm rerun by a provenly correct program

why so much work?

can we trust Prolog?

can we trust sat-solvers (more on that later)?

is the sat encoding correct? (it wasn’t – several times)

certified programs are typically MUCH slower
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another example

sat solving

general problem: is a given propositional formula satisfiable?

very efficient solvers exist, able to deal with gigantic formulas

usable in practice to solve other problems by encoding

nearly impossible to understand the code

recent trend

independently check a trace of the sat solver’s “reasoning”

checking a proof is much easier than finding it

possible to do efficiently

state-of-the-art traces of around 400 TB


