denotational semantics

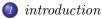
operational semantics 000000 conclusions

hypothetical answers to continuous queries over data streams

 $\frac{\text{luís cruz-filipe}^1}{\text{(joint work with graça gaspar}^2 \& \text{ isabel nunes}^2)}$

¹department of mathematics and computer science university of southern denmark

²department of informatics faculty of sciences, university of lisbon


aaai-20 february 9th, 2020

introduction
0000

 $\begin{array}{c} denotational \ semantics \\ 0000 \end{array}$

operational semantics 000000 conclusions

Outline

denotational semantics

operational semantics

$\substack{introduction\\0\bullet00}$

denotational semantics 0000 operational semantics 000000 conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

the context

continuous queries over data streams

- modern-day distributed systems
- information pouring in from e.g. sensors
- queries need to be answered in real-time
- answers are output as information arrives

$\substack{introduction\\0\bullet00}$

denotational semantics 0000 operational semantics 000000 conclusions

the context

continuous queries over data streams

- modern-day distributed systems
- information pouring in from e.g. sensors
- queries need to be answered in real-time
- answers are output as information arrives

several models

common approach: rule-based reasoning

- usually based on variants of datalog
- set of facts dynamically obtained from a data stream D
- common problems: blocking queries, unbound wait

 $\substack{introduction\\ 00 \bullet 0}$

lenotational semantics

operational semantics 000000 conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

current contribution

online algorithm with offline pre-processing outputting partial information

- information that an answer may be output in the future
- fundamentation for such hypothetical answers

lenotational semantics

 $operational\ semantics$ 000000

conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

current contribution

online algorithm with offline pre-processing outputting partial information

- information that an answer may be output in the future
- fundamentation for such hypothetical answers

practical relevance

partial information allows for preventive measures to be taken

 \bullet an action might be required \leadsto maybe prepare for it

• a failure might occur \rightsquigarrow steps may be taken to prevent it the justification for *why* the hypothetical answer is output can be used to evaluate its likelihood introduction 000• lenotational semantics

operational semantics 000000 conclusions

detecting malfunctions in wind turbines

 $\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$ $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$ $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$

- a data center managing a set of wind turbines receives temperature readings Temp(*Device*, *Level*, *Time*) from sensors in each turbine
- the data centre tracks activation of cooling measures in each turbine, recording shutdowns by means of a program in temporal datalog

denotational semantics 0000 operational semantics 000000 conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

detecting malfunctions in wind turbines

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$

query: Q = Shdn(X, T)

if:

$$\mathsf{Temp}(\mathsf{wt25},\mathsf{high},i) \qquad i=0,1,2$$

all arrive at the data stream, then $\{X:=\mathsf{wt25},\, T:=2\}$ is an answer to Q

denotational semantics 0000 operational semantics 000000 conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

detecting malfunctions in wind turbines

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$

query: Q = Shdn(X, T)

but: once

Temp(wt25, high, 0)

arrives, we already know that $\{X:=\mathsf{wt25},\, T:=2\}$ might become an answer to Q

denotational semantics

operational semantics 000000 conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

detecting malfunctions in wind turbines

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$

query: Q = Shdn(X, T)

and since

Temp(wt42, high, 0)

does not arrive, we know that $\{X := wt42, T := 2\}$ cannot become an answer to Q

denotational semantics 0000 operational semantics 000000 conclusions

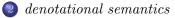
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

detecting malfunctions in wind turbines

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$

assumption


we assume that the data stream D is complete at each time point, i.e. at time τ it contains all facts with timestamps $\leq \tau$ we call this set of facts the τ -history D_{τ}

 $\begin{array}{l} denotational \ semantics \\ \bullet \\ \circ \\ \circ \\ \circ \end{array}$

operational semantics 000000 conclusions

Outline

operational semantics

 $_{0000}^{introduction}$

denotational semantics 0000

 $operational\ semantics$ 000000

conclusions

extensional predicates

we assume that the predicate symbols occurring in D do not appear in heads of rules in Π – these are *extensional* predicates

hypothetical answers

a hypothetical answer to a query Q over a program Π and a history D_{τ} is a pair $\langle \theta, H \rangle$, where θ is a substitution and H is a finite set of ground extensional atoms (the hypotheses) such that:

- θ only instantiates variables free in Q
- H only contains atoms with time stamp au' > au
- $\Pi \cup D_{\tau} \cup H \models Q\theta$
- H is minimal with respect to set inclusion

denotational semantics 0000

operational semantics 000000 conclusions

our example program

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$

 \overline{query}

Q = Shdn(X, T)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

denotational semantics 0000

operational semantics 000000 conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

our example program

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$

query

Q = Shdn(X, T)

$\mathsf{Temp}(\mathsf{wt25},\mathsf{high},0) \in D_0$

 $\langle \{X := wt25, T := 2\}, H \rangle$ is a hypothetical answer to Q for $H = \{\text{Temp}(wt25, \text{high}, i) \mid i = 1, 2\}$

denotational semantics 0000

operational semantics 000000 conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

our example program

$$\mathsf{Temp}(X,\mathsf{high},T) o \mathsf{Flag}(X,T)$$

 $\mathsf{Flag}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Cool}(X,T+1)$
 $\mathsf{Cool}(X,T) \wedge \mathsf{Flag}(X,T+1) \to \mathsf{Shdn}(X,T+1)$

query

Q = Shdn(X, T)

$Temp(wt42, high, 0) \notin D_0$

 $\langle \{X:=\mathsf{wt42},\, T:=2\}, H\rangle$ is not a hypothetical answer to Q for any H

denotational semantics $000 \bullet$

operational semantics 000000 conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

supported answers

- a non-empty set of facts E ⊆ D_τ is *evidence* supporting a hypothetical answer ⟨θ, H⟩ if E is a minimal set
 s.t. Π ∪ E ∪ H ⊨ Pθ
- a supported answer to Q over D_τ is a triple (θ, H, E) where E is evidence supporting (θ, H)

introduction	
0000	

denotational semantics $000 \bullet$

operational semantics 000000 conclusions

supported answers

- a non-empty set of facts E ⊆ D_τ is *evidence* supporting a hypothetical answer ⟨θ, H⟩ if E is a minimal set
 s.t. Π ∪ E ∪ H ⊨ Pθ
- a supported answer to Q over D_{τ} is a triple $\langle \theta, H, E \rangle$ where E is evidence supporting $\langle \theta, H \rangle$

in our example program

the fact

```
\mathsf{Temp}(\mathsf{wt25},\mathsf{high},0) \in D_0
```

is evidence that $\langle \{X:=\mathsf{wt25}, \mathcal{T}:=2\}, \mathcal{H}\rangle$ is a hypothetical answer to Q for

 $H = \{\mathsf{Temp}(\mathsf{wt25},\mathsf{high},i) \mid i = 1,2\}$

うしん 同一人用 イモットモット 白マ

denotational semantics 0000 $operational \ semantics$ $\bullet 00000$ conclusions

Outline

introduction

2) denotational semantics

③ operational semantics

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへ⊙

introduction	
0000	

 $\begin{array}{c} denotational \ semantics \\ 0000 \end{array}$

 $\substack{operational \ semantics\\ 0\bullet0000}$

conclusions

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

intuition

 $_{0000}^{introduction}$

denotational semantics 0000 $\substack{operational \ semantics\\ 0\bullet0000}$

conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

intuition

 $\leftarrow \operatorname{Shdn}(X,T)$

 $\begin{array}{c} denotational \ semantics \\ 0000 \end{array}$

 $\substack{operational \ semantics\\ 0\bullet0000}$

conclusions

intuition

$$\leftarrow \mathsf{Shdn}(X, \mathcal{T}) \\ \downarrow \\ \leftarrow \mathsf{Cool}(X, \mathcal{T} - 1), \mathsf{Flag}(X, \mathcal{T}) \\ \downarrow \\ \downarrow$$

 $\begin{array}{c} denotational \ semantics \\ 0000 \end{array}$

operational semantics 00000

conclusions

intuition

 $_{0000}^{introduction}$

denotational semantics 0000

 $\substack{operational \ semantics\\ 0\bullet0000}$

conclusions

intuition

denotational semantics 0000 $operational \ semantics$ 000000 conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

future atom

an atom $P(t_1, \ldots, t_n)$ is a *future atom wrt* τ if P is a temporal predicate and the time term t_n either contains a temporal variable or is a time instant $t_n > \tau$

denotational semantics 0000 $operational \ semantics$ 000000 conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

future atom

an atom $P(t_1, \ldots, t_n)$ is a *future atom wrt* τ if P is a temporal predicate and the time term t_n either contains a temporal variable or is a time instant $t_n > \tau$

sld-refutation, revisited

an sld-refutation with future premises of Π and Q over D_{τ} is a finite sld-derivation of $P \cup D_{\tau} \cup \{\neg Q\}$ whose last goal only contains extensional future atoms wrt τ

denotational semantics

 $operational \ semantics$ 000000 conclusions

future atom

an atom $P(t_1, \ldots, t_n)$ is a *future atom wrt* τ if P is a temporal predicate and the time term t_n either contains a temporal variable or is a time instant $t_n > \tau$

sld-refutation, revisited

an sld-refutation with future premises of Π and Q over D_{τ} is a finite sld-derivation of $P \cup D_{\tau} \cup \{\neg Q\}$ whose last goal only contains extensional future atoms wrt τ

computed answer with premises

if \mathcal{D} is an sld-refutation with future premises of Q over D_{τ} with last goal $G = \neg \wedge_i \alpha_i$ and θ is the restriction of the composition of the substitutions in \mathcal{D} to var(Q), then $\langle \theta, \wedge_i \alpha_i \rangle$ is a *computed answer with premises* to Q over D_{τ} $\begin{array}{c} introduction \\ 0000 \end{array}$

denotational semantics

 $operational \ semantics$ 000000 conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

independence of the computation rule

from classical results about sld-resolution, we can reorder the steps of any sld-refutation with future premises to use the facts from D_τ in temporal order

lenotational semantics

 $operational \ semantics$ 000000 conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

independence of the computation rule

from classical results about sld-resolution, we can reorder the steps of any sld-refutation with future premises to use the facts from D_τ in temporal order

key idea

this simple observation gives us an incremental algorithm

- at each step, update any "ongoing" derivations with the new facts
- any derivations expecting facts that did not arrive are forgotten
- some pre-processing allows us to identify relevant facts

denotational semantics 0000 $operational \ semantics$ 000000 conclusions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

a two-stage algorithm

pre-processing step

we compute answers with premises to Q over D_{-1}

- we store the minimal answers wrt set inclusion in a set \mathcal{P}_Q
- we initialize the set \mathcal{S}_{-1} of schematic supported answers to \emptyset

denotational semantics 0000 $operational \ semantics$ 000000 conclusions

a two-stage algorithm

pre-processing step

we compute answers with premises to Q over D_{-1}

- we store the minimal answers wrt set inclusion in a set \mathcal{P}_Q
- we initialize the set \mathcal{S}_{-1} of schematic supported answers to \emptyset

online step

to compute $S_{\tau+1}$ from S_{τ} and $D_{\tau+1} \setminus D_{\tau}$:

- for each answer in \mathcal{P}_Q , we perform sld-resolution between its set of elements with minimal timestamps and $D_{\tau+1} \setminus D_{\tau}$
- for each element of S_{τ} , we perform sld-resolution between its set of elements with timestamp $\tau + 1$ and $D_{\tau+1} \setminus D_{\tau}$

each refutation yields an element in $\mathcal{S}_{\tau+1}$

 $_{0000}^{introduction}$

denotational semantics 0000 $\begin{array}{c} operational \ semantics \\ \texttt{00000} \bullet \end{array}$

conclusions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

termination (i)

under suitable assumptions, the pre-processing step terminates

denotational semantics 0000 $\begin{array}{c} operational \ semantics \\ \texttt{00000} \bullet \end{array}$

conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

termination (i)

under suitable assumptions, the pre-processing step terminates

termination (ii)

the online step terminates in polynomial time in the size of $\mathcal{S}_{ au}$, \mathcal{P}_Q and $D_{ au+1}\setminus D_{ au}$

denotational semantics 0000 $operational \ semantics$ $00000 \bullet$ conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

termination (i)

under suitable assumptions, the pre-processing step terminates

termination (ii)

the online step terminates in polynomial time in the size of $\mathcal{S}_{ au}$, \mathcal{P}_Q and $D_{ au+1}\setminus D_{ au}$

soundness

every instantiation of an element of \mathcal{S}_{τ} is a supported answer to Q over Π and D_{τ}

 $_{0000}^{introduction}$

lenotational semantics

 $operational \ semantics$ $00000 \bullet$ conclusions

termination (i)

under suitable assumptions, the pre-processing step terminates

termination (ii)

the online step terminates in polynomial time in the size of $\mathcal{S}_{ au}$, \mathcal{P}_Q and $D_{ au+1}\setminus D_{ au}$

soundness

every instantiation of an element of \mathcal{S}_{τ} is a supported answer to Q over Π and D_{τ}

completeness

every supported answer to Q over Π and D_τ is an instantiation of an element of \mathcal{S}_τ


denotational semantics 0000 operational semantics 000000 conclusions

Outline

2 denotational semantics

denotational semantics 0000 operational semantics 000000 conclusions ○●○

main achievements

our contribution

- denotational semantics for hypothetical answers
- notion of evidence for hypothetical answers
- operational semantics based on sld-resolution
- online algorithm with offline pre-processing outputting partial information
- parallel computation of answers (bypasses some usual problems)
- more expressive negation in the language
- new (decidable) notion of stratification with computable strata future work
 - an implementation...

denotational semantics 0000 operational semantics 000000 conclusions ○○●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

thank you!