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computers and mathematical proofs

the 4-color theorem

Appel, Haken and Koch (1977)

traditionally presented as first example of a computer proof

sparked a discussion on what a proof is

more than 10 years before. . .

(Floyd & Knuth, 1973)
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. . . but are these mathematical proofs?

these proofs rely on an ad-hoc program

is the program correct?

is the program running correctly?

how does peer-reviewing address these “proofs”?

trust the program?

rerun the program?

reimplement the program?

or. . . ?
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the Curry–Howard correspondence

what it is

correspondence between:

in proofs a sequent calculus for some logic

and type derivations in a particular type system

how it helps us

propositions are types

proofs are programs

proof verification is type checking

 type checking is often easy to implement
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theorem provers based on type theory

typical features

expressive type theory, corresponding to an expressive logic

interactive ways to write proofs/build terms

powerful automation techniques

what do we need to trust?

the type checker (and nothing else)

de Bruijn principle

the critical part of a program used in a mathematical proof should
be as small and simple as possible
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the reality: a bit of everything. . .

formal proofs using trusted theorem provers (e.g. the 4-color
theorem)

proofs using ad-hoc programs with a small de Bruijn kernel

proofs relying on calculations by extremely complex computer
algebra systems

“proofs” relying on black box systems known to be faulty
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an unavoidable evolution

the use of computers in mathematics is becoming more
widespread

computer proofs were the topic of an expert panel discussion
at ICM 2018

we should understand the different styles of proofs, and push
for the “right” ones

. . . and our research can actually benefit from the right tools
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a combinatorial problem

the problem

find S(n): length of the minimal sequence of compare-and-swap
operations that sorts every input of length n

the good part

some theoretical properties of such sequences

the bad part

no known “clever” way to solve it

essentially: explore the search space (with some pruning)
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historical evolution

Floyd & Knuth, 1973

determine S(2), S(3) and S(5) by hand (exhaustively)

S(7) determined by a computer program (which? how?)

S(4), S(6) and S(8) follow from a theoretical result
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historical evolution

Floyd & Knuth, 1973: S(2)–S(8)

Codish, Cruz-Filipe, Frank & Schneider-Kamp, 2014: S(9)
and S(10)

Hardis, 2019 (unpublished): S(11) and S(12)

for completeness. . .

theoretical result by Van Voorhis (1972), S(14) does not follow
from S(13)
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a difference in approach

Floyd & Knuth, 1973

Codish, Cruz-Filipe, Frank & Schneider-Kamp, 2014

computer program to explore state space: generate all successors,
prune unnecessary branches, rinse and repeat

must generate all successors

must not prune too much

(algorithms included in publication)
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but is this enough?

de Bruijn kernel

16 lines of VERY simple prolog code

but: must also trust prolog interpreter. . .

a formal proof in Coq

program produces witnesses for pruning

checker reruns algorithm using witnesses

checker is proved correct in Coq

a new tradition?

Hardis (2019) skips the implementation, and instead includes a
formalization in Isabelle/HOL
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there’s more to the story. . .

alternative approach

encode “S(n) ≤ k” as a propositional formula and apply a
sat-solver

 big success stories of sat-solving in the last decade

sat-solvers in a nutshell

programs that solve the propositional satisfiability problem

based on resolution

when that fails, case analysis

lots of heuristics

lots of smart, derived rules
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potential issues

verifiability

“yes”: a valuation is given (can be checked independently)

“no”: that’s it

Heule, 2013

seminal paper claiming verification of negative answers is unfeasible
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“yes”: a valuation is given (can be checked independently)

“no”: that’s it

Heule, 2013

seminal paper claiming verification of negative answers is unfeasible

problems

black-box complex systems, highly optimized, kept secret

sketchy presentations in publications (at least for logicians)
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potential issues

verifiability

“yes”: a valuation is given (can be checked independently)

“no”: that’s it

Heule, 2013

seminal paper claiming verification of negative answers is unfeasible

the elephant in the room

the encoding
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building trust

Heule and others, 2010s

formats for communicating unsatisfiability proofs

too tailored to the individual systems

can only be checked by the program that produced them. . .

Cruz-Filipe, Marques-Silva and Schneider-Kamp, 2017

system-independent language for certificates

certified verifier

able to check the largest proof (at the time): 400TB
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no set contains a pythagorean triple?



can computers prove theorems?

case study: sat solving

the boolean pythagorean triples problem

problem
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case study: sat solving

the boolean pythagorean triples problem

problem

can we partition the natural numbers in two disjoint sets such that
no set contains a pythagorean triple?

answer (Heule 2016)

no!

proof

a sat-solver said so
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the boolean pythagorean triples problem

problem

can we partition the natural numbers in two disjoint sets such that
no set contains a pythagorean triple?

proof technique

encode the finite instance with the set {1, . . . , 7825}
generate a propositional formula (c program)

split the formula in 1000 different cases

solve each case with a sat-solver

all cases unsat → theorem
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do we have a mathematical proof?

lots of different issues

prove that the encoding is correct

prove that the splitting is correct

prove that each unsatisfiability claim is correct

the bad news

all these steps have been done

unfortunately: not much sympathy for the effort

currently: mathematical results are still being “proved”
without formal verification
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a problematic area

the area in a nutshell

type systems for verifying distributed programs

equivalent to a resource logic (think linear logic)

two layers of types/formulas (global and local)

two layers of programs

four different, related, systems

the challenge

conference-first publications: 16-page limit

very compressed presentations, proofs in appendix

very boring straightforward proofs by structural induction
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disturbing signals

too many wrong proofs

in reference books

in published articles

Maksimovic & Schmitt, 2015

attempted formalization of a research article in Coq

nearly all proofs were wrong

induction hypotheses were not strong enough

one lemma could not be proved by structural induction
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our own experiment

choreographic programming

a type system with data: merges programs and their types

only local and global view (two systems)

motivation

reviewing process for a journal publication: three years

no real “problems”

but not enough details in the (very long and boring) proofs
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Coq formalization

Cruz-Filipe, Montesi & Peressotti, 2019 & 2021

two-year process (with breaks: mostly lockdown entertainment)

all results in the main theory were correct

all proof strategies were correct

formalization spotted unnecessary hypotheses and some typos

difficulties suggested simplifications to the theory

the irony: two wrong results

not in the main theory (separate sections)

never questioned by reviewers
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the lesson

formalization pays off

the theorem prover is easier to convince than the reviewers

it also requires less time

once the formal proof is there, it must be right (right?)

new experiment

submit an article claiming “all results have been formalized”

(we’re anxiously awaiting the answer)
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final thoughts

computer-assisted proofs are here to stay

variety of flavors, important to understand them

formalizations can actually help improve the theory

still a lot of communication needed

still hard for non-experts (but getting better)
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