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t. We study an on-line bin pa
king problem. A �xed number n of bins, possibly ofdi�erent sizes, are given. The items arrive on-line, and the goal is to pa
k as many items aspossible. It is known that there exists a legal pa
king of the whole sequen
e in the n bins. We
onsider fair algorithms that reje
t an item, only if it does not �t in the empty spa
e of any bin.We show that the 
ompetitive ratio of any fair, deterministi
 algorithm lies between 12 and 23 ,and that a 
lass of algorithms in
luding Best-Fit has a 
ompetitive ratio of exa
tly n2n�1 .1 Introdu
tionThe Problem. We 
onsider the following bin pa
king problem. The input 
onsists of n bins,possibly of di�erent sizes, and a sequen
e of positively sized items. The bins as well as thesizes of the bins are denoted by B1; B2; : : : ; Bn. The items arrive on-line, i.e., ea
h item mustbe pa
ked before the next item is seen, and pa
ked items 
annot be moved between bins. Thegoal is to pa
k as many items as possible into the n bins. A bin is legally pa
ked if the totalsize of the items assigned to it is at most the size of the bin. This problem of maximizing thenumber of items pa
ked in a �xed number of bins is sometimes 
alled dual bin pa
king, todistinguish it from the 
lassi
al bin pa
king problem whi
h is to pa
k all items in as few binsas possible. In [8℄ the problem is reported to have been named dual bin pa
king in [18℄. Notethat this name is also sometimes used for bin 
overing [2, 12, 13℄. For a survey on 
lassi
al binpa
king in identi
al bins, see [14, 11℄.Throughout the paper, we restri
t the input sequen
es to be a

ommodating [6, 7℄, i.e.,sequen
es that an optimal o�-line algorithm, whi
h knows all items in advan
e, 
an pa
k
ompletely. The reason for this restri
tion is that, for general sequen
es, no on-line algorithm
an pa
k a 
onstant fra
tion of the number of items that 
an be pa
ked by an optimal o�-linealgorithm.The problem 
an also be seen as a s
heduling problem with n uniformly related ma
hines.In the basi
 s
heduling problem, ea
h job is to be assigned to one of the ma
hines so as tominimize the makespan. This problem was �rst studied for the 
ase of identi
al ma
hinesby Graham [15℄, and for uniformly related ma
hines by [1, 10, 4℄. For a survey on on-lines
heduling problems, see [20℄. Consider a s
heduling problem with a deadline and assumethat the aim is to s
hedule as many jobs as possible before this deadline. If an optimal o�-linealgorithm 
an s
hedule all jobs of any input sequen
e before the deadline, this problem isequivalent to our problem. Our problem 
an also be seen as a spe
ial 
ase of the multipleknapsa
k problem (see [19, 9℄), where all items have unit pro�t. (This problem was mainlystudied in the o�-line environment.)? Resear
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The Algorithms. In this paper we study fair algorithms [3℄. A fair algorithm reje
ts an item,only if the item does not �t in the empty spa
e of any bin.Some of the algorithms that are 
lassi
al for the 
lassi
al bin pa
king problem (wherethe whole sequen
e of items is to be pa
ked in as few bins as possible) 
an be adapted toour problem. Su
h an adaptation for identi
al bins was already done in [7℄: the n bins areall 
onsidered open from the beginning, and no new bin 
an be opened. We also use thisadaptation. Sin
e there is no unique way to de�ne First-Fit for variable sized bins, we dis
ussthis in Se
tion 3.The Quality Measure. The 
ompetitive ratio of an on-line algorithm A for the dual binpa
king problem is the worst 
ase ratio, over all possible input sequen
es, of the number ofitems pa
ked by A to the number of items pa
ked by an optimal o�-line algorithm. Often anadditive 
onstant is allowed, yielding the following de�nition of the 
ompetitive ratio.De�nition 1.1. For any algorithm A and any sequen
e I of items, let A (I) be the numberof items pa
ked by A and let OPT(I) be the number of items pa
ked by an optimal o�-linealgorithm. Furthermore, let 0 � 
 � 1. An on-line algorithm A is 
-
ompetitive if there existsa 
onstant b su
h thatA (I) � 
 �OPT(I)� b; for any sequen
e I of items.The 
ompetitive ratio of A isCA = supf
 j A is 
-
ompetitiveg.Note that sin
e dual bin pa
king is a maximization problem, the 
ompetitive ratio liesbetween 0 and 1.If the additive 
onstant b is zero or negative, the algorithm is 
alled stri
tly 
-
ompetitive.The bounds given in this paper are valid for the stri
t 
ompetitive ratio as well as for the
ompetitive ratio in general.For randomized algorithms, the 
ompetitive ratio is de�ned similarly, but A (I) is repla
edby the expe
ted value of A (I), E(A (I)).The Results. We show the following results for fair algorithms on a

ommodating sequen
es.{ Any fair algorithm has a 
ompetitive ratio of at least 12 , and the 
ompetitive ratio ofWorst-Fit is exa
tly 12 .{ A 
lass of algorithms that give preferen
e to smaller bins has a 
ompetitive ratio of exa
tlyn2n�1 . This 
lass 
ontains Best-Fit as well as the variant of First-Fit that sorts the bins inorder of non-de
reasing sizes.{ Any fair, deterministi
 algorithm has a 
ompetitive ratio of at most 23 , and any fair,randomized algorithm has a 
ompetitive ratio of at most 45 .Previous Work. Dual bin pa
king in identi
al bins has been studied both in the o�-lineversion [17, 16℄ and in the on-line version for a

ommodating sequen
es [6, 7, 3℄. Even foridenti
al bins, a restri
tion on the input sequen
es is needed in order to be able to a
hievea 
onstant 
ompetitive ratio [7℄. In [7℄, fair algorithms are 
onsidered and it is shown thatFirst-Fit has a 
ompetitive ratio of at least 58 on a

ommodating sequen
es. An upper boundof 67 for any fair or unfair randomized algorithm is also given. In [3℄, a (23 � 24n+1)-
ompetitiveunfair algorithm is given, the negative result for fair deterministi
 algorithms is improved to0.809, and the bound of 58 for First-Fit is shown to be asymptoti
ally tight (the upper boundapproa
hes 58 as n approa
hes in�nity).



2 General Results on Fair AlgorithmsIn this se
tion we show that, on a

ommodating sequen
es, the 
ompetitive ratio of any fair,deterministi
 algorithm lies between 12 and 23 , and the 
ompetitive ratio of any randomizedalgorithm is at most 45 .2.1 Positive ResultsThe main result of this se
tion is that any fair algorithm is 12 -
ompetitive on a

ommodatingsequen
es. We need the following lemma whi
h is adapted from a similar lemma for identi
albins in [7℄.Lemma 2.1. For any fair algorithm, the number of reje
ted items is no larger than thenumber of a

epted items, if the input sequen
e is a

ommodating.Proof. Given an instan
e of the dual bin pa
king problem with an a

ommodating sequen
eI, we de�ne a sequen
e I 0 as follows. Ea
h a

epted item of size x is repla
ed by bxs 
 items ofsize s, where s is the minimum size of any reje
ted item. Ea
h reje
ted item is de
reased tohave size s. Clearly, a pa
king of all items of I de�nes a legal pa
king of all items of I 0, hen
eI 0 is also an a

ommodating sequen
e.Let P be the on-line pa
king of I and let P 0 be the pa
king of I 0 indu
ed by P . Note thatall items of I 0 have the same size. Thus, to 
al
ulate an upper bound on the number of itemsreje
ted we just need to �nd an upper bound on the number of items of size s that �t in thebins after doing the pa
king P 0.For ea
h bin Bi, let ki denote the number of items in bin Bi in the pa
king P . The emptyspa
e in Bi in the pa
king P 0 
onsists of the empty spa
e in Bi in the pa
king P and the spa
efreed by the rounding down of the items pa
ked in Bi. The empty spa
e in Bi in P is lessthan s, sin
e the algorithm is fair, and the total size of ea
h original item was de
reased byless than s. Thus, the empty spa
e in Bi in P 0 is stri
tly less than s(ki+1). We 
on
lude thatthe number of reje
ted items is at most Pni=1 ki whi
h is the number of a

epted items. utCorollary 2.2. Any fair algorithm has a 
ompetitive ratio on a

ommodating sequen
es ofat least 12 .We 
lose this se
tion with an easy lemma that will be needed in Se
tion 2.2 and Se
tion 3.Let C be the set of non-empty bins in the optimal o�-line pa
king. Let N = jCj.Lemma 2.3. Given an a

ommodating input sequen
e, any fair algorithm reje
ts at mostN � 1 items.Proof. If the on-line algorithm does not reje
t any items, its pa
king is optimal. Assume now,that at least one item is reje
ted. Let s be the minimum size of any reje
ted item. Sin
e thealgorithm is fair, the empty spa
e in ea
h bin is less than s. Another trivial upper bound onthe empty spa
e in any bin B is the size B of the bin. Thus, the total empty spa
e in theon-line pa
king is stri
tly less than Ns+PB=2C B. The total empty spa
e of OPT is at leastPB=2C B. Hen
e, sin
e OPT a

epts all items, the total size of all reje
ted items is stri
tlyless than Ns. Sin
e all reje
ted items are of size at least s, there are at most N � 1 reje
teditems. ut



2.2 Negative ResultsIn this se
tion we show an upper bound of 23 for deterministi
, fair algorithms and an upperbound of 45 for randomized, fair algorithms.We �rst prove the upper bound of 23 for the stri
t 
ompetitive ratio. This is relativelyeasy for any n � 2. Consider for example the following instan
e with n � 2 bins of size ",0 < " < 1, one bin of size 2, and one bin of size 3. The input sequen
e 
onsists of two or threeitems that are all too large for the bins of size ". The �rst item has size 1. If this �rst itemis assigned to the bin of size 3, an item of size 3 arrives next. Otherwise, two items of size 2will arrive. In the �rst 
ase, only the �rst item is pa
ked, sin
e the se
ond does not �t, and inthe se
ond 
ase only two items are a

epted, the third does not �t. It is easy to see that bothsequen
es are a

ommodating. This gives an upper bound of 23 on the stri
t 
ompetitive ratio,for n � 2. Applying Yao's inequality [21℄ as des
ribed in [5℄ on these two sequen
es gives anupper bound of 45 on the stri
t 
ompetitive ratio for randomized algorithms. This 
an be seenin the following way. Consider the sequen
e where the �rst item of size 1 is followed by oneitem of size 3 with probability p1 = 25 and by two items of size 2 with probability p2 = 35 . Analgorithm that pa
ks the �rst item in the bin of size 3 will have an expe
ted performan
e ratioof at most p1 � 12 +p2 �1 = 45 . Similarly, an algorithm that pa
ks the �rst item in the bin of size2 will have an expe
ted performan
e ratio of at most p1 �1+p2 � 23 = 45 . Thus, no deterministi
algorithm 
an have an expe
ted performan
e ratio larger than 45 on this sequen
e.However, we are interested in negative results that hold for the 
ompetitive ratio in general,and not only for the stri
t 
ompetitive ratio. By Lemma 2.3, the number of reje
ted items isat most n� 1. As long as there is only a 
onstant number of bins, we 
an view the numberof reje
ted items as just an additive 
onstant, and hen
e any fair algorithm has 
ompetitiveratio 1. Thus, to prove the following theorem, we need to �nd arbitrarily long a

ommodatingsequen
es with the property that only 23 of the items are a

epted.Theorem 2.4. Any fair, deterministi
 on-line algorithm for the dual bin pa
king problemhas a 
ompetitive ratio of at most 23 on a

ommodating sequen
es.Proof. For ` = 1; : : : ; bn2 
, we give the pair of binsB2`�1 = 2`+ 4`" and B2` = 2`+ 2 � 4`";where " < 14n is a positive 
onstant. Thus, 4`" < 1, 1 � ` � bn2 
. If n is odd, the last bin isof size "2 (so that no items are pa
ked in that bin for the sequen
e we de�ne). The sequen
e
ontains 3 � bn2 
 items and is 
onstru
ted so that exa
tly 2 � bn2 
 of them are a

epted.The sequen
e is de�ned indu
tively in steps bn2 
; bn2 
� 1; : : : ; 1. In step k, two large itemsare given and one small item is de�ned. The small items are given after all large items andare de�ned su
h that they will be reje
ted by the on-line algorithm. The sizes of the two largeitems are de�ned su
h that{ the on-line algorithm will pa
k them in B2k and B2k�1, one in ea
h bin, and{ after pa
king the two items, the empty spa
e in the two bins have the same size denotedEk.For 
onvenien
e we de�ne Ebn2 
+1 = 0. As will be seen later, Ek+1 < Ek, 1 � k � bn2 
.Furthermore, we will prove that E1 < 1.The �rst large item given in step k has size 2k � Ek+1. Thus, the very �rst item has size2�bn2 
, and the size of the �rst large item of ea
h of the later steps depends on the empty spa
e




reated in the previous step. Sin
e 2k � Ek+1 > 2k � 1 and all previous bins Bn; : : : ; B2k+1have less than one unit of empty spa
e, this item �ts only in B2k and B2k�1. What happensnext depends on whi
h of these two bins the algorithm 
hooses.Case 1: The �rst large item is pa
ked in B2k�1. In this 
ase, the next large item has size2k �Ek+1 + 4k". This item will be pa
ked in B2k. Now, the empty spa
e in ea
h of the binsB2k and B2k�1 is Ek = Ek+1+4k". The small item de�ned in this step has size Sk = Ek+4k".Note that this item does not �t in B2k or B2k�1, but the o�-line algorithm 
an pa
k the �rstlarge item in B2k together with the small item and put the se
ond large item in B2k�1.Case 2: The �rst large item is pa
ked in B2k. In this 
ase, the next large item has size2k � Ek+1 � 4k". For k � 2, this item does not �t in B2k�2, sin
e 2k � Ek+1 � 4k" >2k � 1 � 4k" � 2k � 2 + 3 � 4k", for n � 2, and B2k�2 = 2k � 2 + 2 � 4k�2�. Hen
e, thisitem must be pa
ked in B2k�1. Now, the empty spa
e in ea
h of the bins B2k and B2k�1 isEk = Ek+1 + 2 � 4k". The small item de�ned in this step has size Sk = Ek + 4k". This itemdoes not �t in B2k or B2k�1, but the o�-line algorithm 
an pa
k the �rst large item in B2k�1and put the se
ond large item in B2k�1 together with the small item.Note that Ek+1 + 4k" � Ek � Ek+1 + 2 � 4k", 1 � k � bn2 
. The �rst inequality tells usthat, to prove that none of the small items will be a

epted, it suÆ
es to prove that Sk > E1,2 � k � bn2 
. This is easily done using the se
ond inequality. For 2 � k � bn2 
,E1 � Ek + 2 � k�1Xi=1 4i" < Ek + 4k" = Sk:Finally, E1 � Ebn2 
+1 + 2 � bn2 
Xi=1 4i" < 4bn2 
+1" < 4bn2 
+1�n � 1: utWe move on to randomized algorithms. Sin
e the previous sequen
e was built step bystep, we need to give a simpler sequen
e in order to prove the following theorem.Theorem 2.5. Any fair randomized algorithm has a 
ompetitive ratio on a

ommodatingsequen
es of at most 45 .Proof. We use bn2 
 bins of size 1 + " and bn2 
 bins of size 2� ", where 0 < " < 12 . If n is odd,the last bin is of size ". The sequen
e starts with bn2 
 items of size 1. We des
ribe a proof fordeterministi
 algorithms �rst. Sin
e the algorithm is fair, all bn2 
 items are a

epted. Let xbe the number of bins of size 1 + " that re
eived an item (no bin 
an re
eive more than oneitem). Then, exa
tly x bins of size 2� " are empty. What happens next depends on the sizeof x.Case x � 35 � bn2 
. In this 
ase, the sequen
e 
ontinues with bn2 
 items of size 2 � ", and theon-line algorithm a

epts bn2 
+ x items in total out of the 2bn2 
. This gives a fra
tion ofbn2 
+ x2bn2 
 � 1 + 352 = 45 :



Case x > 35 � bn2 
. In this 
ase, the sequen
e 
ontinues with bn2 
 items of size 1+ " followed bybn2 
 items of size 1 � ". After the arrival of items of size 1, there are bn2 
 empty bins. Thus,all items of size 1 + " are a

epted and now ea
h bin has exa
tly one item. Items of size 1� "
an only be assigned to bins of size 2�" that 
ontain an item of size 1, hen
e bn2 
�x of themare a

epted. Thus, the fra
tion 3bn2 
 � x3bn2 
 < 3� 353 = 45of the items is a

epted.To get a randomized result, let x be the expe
tation of the number of bins of size 1 + "that got an item. The bound follows by linearity of expe
tation. ut3 Results on Spe
i�
 Fair AlgorithmsWe now analyze spe
i�
 algorithms. Some natural fair algorithms are First-Fit, Best-Fit, andWorst-Fit. The algorithm First-Fit is not a single algorithm, but a 
lass of algorithms thatgive an order to the bins, and use the algorithm a

ording to this order, i.e., assign an itemto the �rst bin (in the ordered set of bins) that the item �ts in. Among the various versionsof First-Fit, two are most natural; Smallest-Fit assigns an item to the smallest bin it �ts into,and Largest-Fit assigns an item to the largest bin it �ts into. The other algorithms are used intheir 
lassi
al version, i.e., Best-Fit pa
ks ea
h item in a bin where it will leave the smallestpossible empty spa
e, and Worst-Fit pa
ks it in the bin where it leaves the largest emptyspa
e. We refer to these four algorithms as SF, LF, BF, and WF.We start the analysis by showing that 12 is indeed the exa
t 
ompetitive ratio of WF andLF.Theorem 3.1. The 
ompetitive ratio of Worst-Fit and Largest-Fit on a

ommodating se-quen
es is 12 .Proof. Let " > 0 be a 
onstant su
h that " � 1n . Consider the following set of bins. One largebin of size n and n � 1 small bins of size 1. The sequen
e 
onsists of n � 1 items of size 1followed by n� 1 items of size 1+ ". Both algorithms LF and WF assign all items of size 1 tothe large bin. As a result, all bins have a free spa
e of size 1, hen
e none of the items of size1 + " 
an be a

epted. The optimal algorithm assigns ea
h small item to a small bin, and allother items to the large bin; they all �t sin
e(1 + ")(n� 1) � (n+ 1)(n� 1)n < n :This example in 
ombination with Corollary 2.2 proves the theorem. utWe further analyze a 
lass of fair algorithms 
alled Smallest-Bins-First to whi
h SF andBF belong. This is the 
lass of fair algorithms that whenever an item is assigned to an emptybin, this is the smallest bin in whi
h the item �ts. There are no additional rules, and thealgorithm may use an empty bin even if the item �ts in a non-empty bin, as long as it usesthe smallest empty bin for that. SF belongs to this 
lass a

ording to its de�nition. BF belongsto this 
lass sin
e, among the empty bins that an item �ts into, it �ts better into the smallerbins than the larger bins. We give a tight analysis of this 
lass as a fun
tion of n. Spe
i�
allywe prove the following.



Theorem 3.2. The 
ompetitive ratio of any Smallest-Bins-First algorithm on a

ommodat-ing sequen
es is n2n�1 .Proof. If, after running the algorithm, all bins of the on-line algorithm are non-empty, thenthere are at least n a

epted items and at most n� 1 reje
ted items (by Lemma 2.3). Thus,in this 
ase, the 
ompetitive ratio is at least n2n�1 .Otherwise, 
onsider the largest (last) bin b that remained empty after running the on-line algorithm. We 
onsider items of size smaller than or equal to b, and items larger than bseparately. Sin
e a bin of size b is empty and no bin larger than b is empty, a

ording to thede�nition of the 
lass of algorithms, ea
h bin of size more than b 
ontains at least one itemlarger than b, namely the �rst item pa
ked in the bin. Moreover, all items of size at most bare a

epted. Let xs be the number of items in bins of size at most b and let n` be the numberof bins larger than b. Let Ns be the number of non-empty bins of OPT of size at most b andN` its number of non-empty bins larger than b. Clearly, xs � Ns (all those bins are of size atmost b and 
ontain at least one item). We get that the number of a

epted items is at leastxs + n` � Ns+N` = N . Thus, by Lemma 2.3, the 
ompetitive ratio is at least N2N�1 � n2n�1 .To show that the result is tight for this 
lass of algorithms, let " < 1n be a positive 
onstant.Consider the set of bins Bi = 1 + "i, i = 1; : : : ; n. The sequen
e 
onsists of n items, one ofsize 1 + "(i � 1) for ea
h i = 1; : : : ; n, followed by n� 1 items of size n"n�1 . All algorithms inthe 
lass assign the item of size 1 + "(i� 1) to Bi. All other items are reje
ted. The optimalo�-line algorithm assigns ea
h large item ex
ept the �rst one to a bin of its size. The �rstitem and the n� 1 small items are assigned to Bn. utNote that when n = 2, the lower bound of n2n�1 mat
hes the general upper bound of 23 .4 Con
lusionWe have proven an upper bound of 23 for all fair algorithms. We have also shown that any fairalgorithm a

epts at least half of the items, and that some algorithms do signi�
antly betterfor very small n. It is left as an open problem to design a fair algorithm with a 
ompetitiveratio signi�
antly larger than 12 for any n, or prove that this is not possible. It is also unknownhow mu
h unfair algorithms 
an be better; the best negative result for those is 67 , whi
h holdseven for identi
al bins [7℄.A
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