
On-Line Maximizing the Number of Items Paked inVariable-Sized BinsLeah Epstein1? and Lene M. Favrholdt2??1 Shool of Computer Siene, The Interdisiplinary Center, Herzliya, Israel. lea�id.a.il.2 Department of Mathematis and Computer Siene, University of Southern Denmark. lenem�imada.sdu.dkkeywords: On-Line, Bin Paking.Abstrat. We study an on-line bin paking problem. A �xed number n of bins, possibly ofdi�erent sizes, are given. The items arrive on-line, and the goal is to pak as many items aspossible. It is known that there exists a legal paking of the whole sequene in the n bins. Weonsider fair algorithms that rejet an item, only if it does not �t in the empty spae of any bin.We show that the ompetitive ratio of any fair, deterministi algorithm lies between 12 and 23 ,and that a lass of algorithms inluding Best-Fit has a ompetitive ratio of exatly n2n�1 .1 IntrodutionThe Problem. We onsider the following bin paking problem. The input onsists of n bins,possibly of di�erent sizes, and a sequene of positively sized items. The bins as well as thesizes of the bins are denoted by B1; B2; : : : ; Bn. The items arrive on-line, i.e., eah item mustbe paked before the next item is seen, and paked items annot be moved between bins. Thegoal is to pak as many items as possible into the n bins. A bin is legally paked if the totalsize of the items assigned to it is at most the size of the bin. This problem of maximizing thenumber of items paked in a �xed number of bins is sometimes alled dual bin paking, todistinguish it from the lassial bin paking problem whih is to pak all items in as few binsas possible. In [8℄ the problem is reported to have been named dual bin paking in [18℄. Notethat this name is also sometimes used for bin overing [2, 12, 13℄. For a survey on lassial binpaking in idential bins, see [14, 11℄.Throughout the paper, we restrit the input sequenes to be aommodating [6, 7℄, i.e.,sequenes that an optimal o�-line algorithm, whih knows all items in advane, an pakompletely. The reason for this restrition is that, for general sequenes, no on-line algorithman pak a onstant fration of the number of items that an be paked by an optimal o�-linealgorithm.The problem an also be seen as a sheduling problem with n uniformly related mahines.In the basi sheduling problem, eah job is to be assigned to one of the mahines so as tominimize the makespan. This problem was �rst studied for the ase of idential mahinesby Graham [15℄, and for uniformly related mahines by [1, 10, 4℄. For a survey on on-linesheduling problems, see [20℄. Consider a sheduling problem with a deadline and assumethat the aim is to shedule as many jobs as possible before this deadline. If an optimal o�-linealgorithm an shedule all jobs of any input sequene before the deadline, this problem isequivalent to our problem. Our problem an also be seen as a speial ase of the multipleknapsak problem (see [19, 9℄), where all items have unit pro�t. (This problem was mainlystudied in the o�-line environment.)? Researh supported in part by the Israel Siene Foundation, (grant No. 250/01-1)?? Supported in part by the Danish Natural Siene Researh Counil (SNF) and in part by the Future andEmerging Tehnologies program of the EU under ontrat number IST-1999-14186 (ALCOM-FT).



The Algorithms. In this paper we study fair algorithms [3℄. A fair algorithm rejets an item,only if the item does not �t in the empty spae of any bin.Some of the algorithms that are lassial for the lassial bin paking problem (wherethe whole sequene of items is to be paked in as few bins as possible) an be adapted toour problem. Suh an adaptation for idential bins was already done in [7℄: the n bins areall onsidered open from the beginning, and no new bin an be opened. We also use thisadaptation. Sine there is no unique way to de�ne First-Fit for variable sized bins, we disussthis in Setion 3.The Quality Measure. The ompetitive ratio of an on-line algorithm A for the dual binpaking problem is the worst ase ratio, over all possible input sequenes, of the number ofitems paked by A to the number of items paked by an optimal o�-line algorithm. Often anadditive onstant is allowed, yielding the following de�nition of the ompetitive ratio.De�nition 1.1. For any algorithm A and any sequene I of items, let A (I) be the numberof items paked by A and let OPT(I) be the number of items paked by an optimal o�-linealgorithm. Furthermore, let 0 �  � 1. An on-line algorithm A is -ompetitive if there existsa onstant b suh thatA (I) �  �OPT(I)� b; for any sequene I of items.The ompetitive ratio of A isCA = supf j A is -ompetitiveg.Note that sine dual bin paking is a maximization problem, the ompetitive ratio liesbetween 0 and 1.If the additive onstant b is zero or negative, the algorithm is alled stritly -ompetitive.The bounds given in this paper are valid for the strit ompetitive ratio as well as for theompetitive ratio in general.For randomized algorithms, the ompetitive ratio is de�ned similarly, but A (I) is replaedby the expeted value of A (I), E(A (I)).The Results. We show the following results for fair algorithms on aommodating sequenes.{ Any fair algorithm has a ompetitive ratio of at least 12 , and the ompetitive ratio ofWorst-Fit is exatly 12 .{ A lass of algorithms that give preferene to smaller bins has a ompetitive ratio of exatlyn2n�1 . This lass ontains Best-Fit as well as the variant of First-Fit that sorts the bins inorder of non-dereasing sizes.{ Any fair, deterministi algorithm has a ompetitive ratio of at most 23 , and any fair,randomized algorithm has a ompetitive ratio of at most 45 .Previous Work. Dual bin paking in idential bins has been studied both in the o�-lineversion [17, 16℄ and in the on-line version for aommodating sequenes [6, 7, 3℄. Even foridential bins, a restrition on the input sequenes is needed in order to be able to ahievea onstant ompetitive ratio [7℄. In [7℄, fair algorithms are onsidered and it is shown thatFirst-Fit has a ompetitive ratio of at least 58 on aommodating sequenes. An upper boundof 67 for any fair or unfair randomized algorithm is also given. In [3℄, a (23 � 24n+1)-ompetitiveunfair algorithm is given, the negative result for fair deterministi algorithms is improved to0.809, and the bound of 58 for First-Fit is shown to be asymptotially tight (the upper boundapproahes 58 as n approahes in�nity).



2 General Results on Fair AlgorithmsIn this setion we show that, on aommodating sequenes, the ompetitive ratio of any fair,deterministi algorithm lies between 12 and 23 , and the ompetitive ratio of any randomizedalgorithm is at most 45 .2.1 Positive ResultsThe main result of this setion is that any fair algorithm is 12 -ompetitive on aommodatingsequenes. We need the following lemma whih is adapted from a similar lemma for identialbins in [7℄.Lemma 2.1. For any fair algorithm, the number of rejeted items is no larger than thenumber of aepted items, if the input sequene is aommodating.Proof. Given an instane of the dual bin paking problem with an aommodating sequeneI, we de�ne a sequene I 0 as follows. Eah aepted item of size x is replaed by bxs  items ofsize s, where s is the minimum size of any rejeted item. Eah rejeted item is dereased tohave size s. Clearly, a paking of all items of I de�nes a legal paking of all items of I 0, heneI 0 is also an aommodating sequene.Let P be the on-line paking of I and let P 0 be the paking of I 0 indued by P . Note thatall items of I 0 have the same size. Thus, to alulate an upper bound on the number of itemsrejeted we just need to �nd an upper bound on the number of items of size s that �t in thebins after doing the paking P 0.For eah bin Bi, let ki denote the number of items in bin Bi in the paking P . The emptyspae in Bi in the paking P 0 onsists of the empty spae in Bi in the paking P and the spaefreed by the rounding down of the items paked in Bi. The empty spae in Bi in P is lessthan s, sine the algorithm is fair, and the total size of eah original item was dereased byless than s. Thus, the empty spae in Bi in P 0 is stritly less than s(ki+1). We onlude thatthe number of rejeted items is at most Pni=1 ki whih is the number of aepted items. utCorollary 2.2. Any fair algorithm has a ompetitive ratio on aommodating sequenes ofat least 12 .We lose this setion with an easy lemma that will be needed in Setion 2.2 and Setion 3.Let C be the set of non-empty bins in the optimal o�-line paking. Let N = jCj.Lemma 2.3. Given an aommodating input sequene, any fair algorithm rejets at mostN � 1 items.Proof. If the on-line algorithm does not rejet any items, its paking is optimal. Assume now,that at least one item is rejeted. Let s be the minimum size of any rejeted item. Sine thealgorithm is fair, the empty spae in eah bin is less than s. Another trivial upper bound onthe empty spae in any bin B is the size B of the bin. Thus, the total empty spae in theon-line paking is stritly less than Ns+PB=2C B. The total empty spae of OPT is at leastPB=2C B. Hene, sine OPT aepts all items, the total size of all rejeted items is stritlyless than Ns. Sine all rejeted items are of size at least s, there are at most N � 1 rejeteditems. ut



2.2 Negative ResultsIn this setion we show an upper bound of 23 for deterministi, fair algorithms and an upperbound of 45 for randomized, fair algorithms.We �rst prove the upper bound of 23 for the strit ompetitive ratio. This is relativelyeasy for any n � 2. Consider for example the following instane with n � 2 bins of size ",0 < " < 1, one bin of size 2, and one bin of size 3. The input sequene onsists of two or threeitems that are all too large for the bins of size ". The �rst item has size 1. If this �rst itemis assigned to the bin of size 3, an item of size 3 arrives next. Otherwise, two items of size 2will arrive. In the �rst ase, only the �rst item is paked, sine the seond does not �t, and inthe seond ase only two items are aepted, the third does not �t. It is easy to see that bothsequenes are aommodating. This gives an upper bound of 23 on the strit ompetitive ratio,for n � 2. Applying Yao's inequality [21℄ as desribed in [5℄ on these two sequenes gives anupper bound of 45 on the strit ompetitive ratio for randomized algorithms. This an be seenin the following way. Consider the sequene where the �rst item of size 1 is followed by oneitem of size 3 with probability p1 = 25 and by two items of size 2 with probability p2 = 35 . Analgorithm that paks the �rst item in the bin of size 3 will have an expeted performane ratioof at most p1 � 12 +p2 �1 = 45 . Similarly, an algorithm that paks the �rst item in the bin of size2 will have an expeted performane ratio of at most p1 �1+p2 � 23 = 45 . Thus, no deterministialgorithm an have an expeted performane ratio larger than 45 on this sequene.However, we are interested in negative results that hold for the ompetitive ratio in general,and not only for the strit ompetitive ratio. By Lemma 2.3, the number of rejeted items isat most n� 1. As long as there is only a onstant number of bins, we an view the numberof rejeted items as just an additive onstant, and hene any fair algorithm has ompetitiveratio 1. Thus, to prove the following theorem, we need to �nd arbitrarily long aommodatingsequenes with the property that only 23 of the items are aepted.Theorem 2.4. Any fair, deterministi on-line algorithm for the dual bin paking problemhas a ompetitive ratio of at most 23 on aommodating sequenes.Proof. For ` = 1; : : : ; bn2 , we give the pair of binsB2`�1 = 2`+ 4`" and B2` = 2`+ 2 � 4`";where " < 14n is a positive onstant. Thus, 4`" < 1, 1 � ` � bn2 . If n is odd, the last bin isof size "2 (so that no items are paked in that bin for the sequene we de�ne). The sequeneontains 3 � bn2  items and is onstruted so that exatly 2 � bn2  of them are aepted.The sequene is de�ned indutively in steps bn2 ; bn2 � 1; : : : ; 1. In step k, two large itemsare given and one small item is de�ned. The small items are given after all large items andare de�ned suh that they will be rejeted by the on-line algorithm. The sizes of the two largeitems are de�ned suh that{ the on-line algorithm will pak them in B2k and B2k�1, one in eah bin, and{ after paking the two items, the empty spae in the two bins have the same size denotedEk.For onveniene we de�ne Ebn2 +1 = 0. As will be seen later, Ek+1 < Ek, 1 � k � bn2 .Furthermore, we will prove that E1 < 1.The �rst large item given in step k has size 2k � Ek+1. Thus, the very �rst item has size2�bn2 , and the size of the �rst large item of eah of the later steps depends on the empty spae



reated in the previous step. Sine 2k � Ek+1 > 2k � 1 and all previous bins Bn; : : : ; B2k+1have less than one unit of empty spae, this item �ts only in B2k and B2k�1. What happensnext depends on whih of these two bins the algorithm hooses.Case 1: The �rst large item is paked in B2k�1. In this ase, the next large item has size2k �Ek+1 + 4k". This item will be paked in B2k. Now, the empty spae in eah of the binsB2k and B2k�1 is Ek = Ek+1+4k". The small item de�ned in this step has size Sk = Ek+4k".Note that this item does not �t in B2k or B2k�1, but the o�-line algorithm an pak the �rstlarge item in B2k together with the small item and put the seond large item in B2k�1.Case 2: The �rst large item is paked in B2k. In this ase, the next large item has size2k � Ek+1 � 4k". For k � 2, this item does not �t in B2k�2, sine 2k � Ek+1 � 4k" >2k � 1 � 4k" � 2k � 2 + 3 � 4k", for n � 2, and B2k�2 = 2k � 2 + 2 � 4k�2�. Hene, thisitem must be paked in B2k�1. Now, the empty spae in eah of the bins B2k and B2k�1 isEk = Ek+1 + 2 � 4k". The small item de�ned in this step has size Sk = Ek + 4k". This itemdoes not �t in B2k or B2k�1, but the o�-line algorithm an pak the �rst large item in B2k�1and put the seond large item in B2k�1 together with the small item.Note that Ek+1 + 4k" � Ek � Ek+1 + 2 � 4k", 1 � k � bn2 . The �rst inequality tells usthat, to prove that none of the small items will be aepted, it suÆes to prove that Sk > E1,2 � k � bn2 . This is easily done using the seond inequality. For 2 � k � bn2 ,E1 � Ek + 2 � k�1Xi=1 4i" < Ek + 4k" = Sk:Finally, E1 � Ebn2 +1 + 2 � bn2 Xi=1 4i" < 4bn2 +1" < 4bn2 +1�n � 1: utWe move on to randomized algorithms. Sine the previous sequene was built step bystep, we need to give a simpler sequene in order to prove the following theorem.Theorem 2.5. Any fair randomized algorithm has a ompetitive ratio on aommodatingsequenes of at most 45 .Proof. We use bn2  bins of size 1 + " and bn2  bins of size 2� ", where 0 < " < 12 . If n is odd,the last bin is of size ". The sequene starts with bn2  items of size 1. We desribe a proof fordeterministi algorithms �rst. Sine the algorithm is fair, all bn2  items are aepted. Let xbe the number of bins of size 1 + " that reeived an item (no bin an reeive more than oneitem). Then, exatly x bins of size 2� " are empty. What happens next depends on the sizeof x.Case x � 35 � bn2 . In this ase, the sequene ontinues with bn2  items of size 2 � ", and theon-line algorithm aepts bn2 + x items in total out of the 2bn2 . This gives a fration ofbn2 + x2bn2  � 1 + 352 = 45 :



Case x > 35 � bn2 . In this ase, the sequene ontinues with bn2  items of size 1+ " followed bybn2  items of size 1 � ". After the arrival of items of size 1, there are bn2  empty bins. Thus,all items of size 1 + " are aepted and now eah bin has exatly one item. Items of size 1� "an only be assigned to bins of size 2�" that ontain an item of size 1, hene bn2 �x of themare aepted. Thus, the fration 3bn2  � x3bn2  < 3� 353 = 45of the items is aepted.To get a randomized result, let x be the expetation of the number of bins of size 1 + "that got an item. The bound follows by linearity of expetation. ut3 Results on Spei� Fair AlgorithmsWe now analyze spei� algorithms. Some natural fair algorithms are First-Fit, Best-Fit, andWorst-Fit. The algorithm First-Fit is not a single algorithm, but a lass of algorithms thatgive an order to the bins, and use the algorithm aording to this order, i.e., assign an itemto the �rst bin (in the ordered set of bins) that the item �ts in. Among the various versionsof First-Fit, two are most natural; Smallest-Fit assigns an item to the smallest bin it �ts into,and Largest-Fit assigns an item to the largest bin it �ts into. The other algorithms are used intheir lassial version, i.e., Best-Fit paks eah item in a bin where it will leave the smallestpossible empty spae, and Worst-Fit paks it in the bin where it leaves the largest emptyspae. We refer to these four algorithms as SF, LF, BF, and WF.We start the analysis by showing that 12 is indeed the exat ompetitive ratio of WF andLF.Theorem 3.1. The ompetitive ratio of Worst-Fit and Largest-Fit on aommodating se-quenes is 12 .Proof. Let " > 0 be a onstant suh that " � 1n . Consider the following set of bins. One largebin of size n and n � 1 small bins of size 1. The sequene onsists of n � 1 items of size 1followed by n� 1 items of size 1+ ". Both algorithms LF and WF assign all items of size 1 tothe large bin. As a result, all bins have a free spae of size 1, hene none of the items of size1 + " an be aepted. The optimal algorithm assigns eah small item to a small bin, and allother items to the large bin; they all �t sine(1 + ")(n� 1) � (n+ 1)(n� 1)n < n :This example in ombination with Corollary 2.2 proves the theorem. utWe further analyze a lass of fair algorithms alled Smallest-Bins-First to whih SF andBF belong. This is the lass of fair algorithms that whenever an item is assigned to an emptybin, this is the smallest bin in whih the item �ts. There are no additional rules, and thealgorithm may use an empty bin even if the item �ts in a non-empty bin, as long as it usesthe smallest empty bin for that. SF belongs to this lass aording to its de�nition. BF belongsto this lass sine, among the empty bins that an item �ts into, it �ts better into the smallerbins than the larger bins. We give a tight analysis of this lass as a funtion of n. Spei�allywe prove the following.



Theorem 3.2. The ompetitive ratio of any Smallest-Bins-First algorithm on aommodat-ing sequenes is n2n�1 .Proof. If, after running the algorithm, all bins of the on-line algorithm are non-empty, thenthere are at least n aepted items and at most n� 1 rejeted items (by Lemma 2.3). Thus,in this ase, the ompetitive ratio is at least n2n�1 .Otherwise, onsider the largest (last) bin b that remained empty after running the on-line algorithm. We onsider items of size smaller than or equal to b, and items larger than bseparately. Sine a bin of size b is empty and no bin larger than b is empty, aording to thede�nition of the lass of algorithms, eah bin of size more than b ontains at least one itemlarger than b, namely the �rst item paked in the bin. Moreover, all items of size at most bare aepted. Let xs be the number of items in bins of size at most b and let n` be the numberof bins larger than b. Let Ns be the number of non-empty bins of OPT of size at most b andN` its number of non-empty bins larger than b. Clearly, xs � Ns (all those bins are of size atmost b and ontain at least one item). We get that the number of aepted items is at leastxs + n` � Ns+N` = N . Thus, by Lemma 2.3, the ompetitive ratio is at least N2N�1 � n2n�1 .To show that the result is tight for this lass of algorithms, let " < 1n be a positive onstant.Consider the set of bins Bi = 1 + "i, i = 1; : : : ; n. The sequene onsists of n items, one ofsize 1 + "(i � 1) for eah i = 1; : : : ; n, followed by n� 1 items of size n"n�1 . All algorithms inthe lass assign the item of size 1 + "(i� 1) to Bi. All other items are rejeted. The optimalo�-line algorithm assigns eah large item exept the �rst one to a bin of its size. The �rstitem and the n� 1 small items are assigned to Bn. utNote that when n = 2, the lower bound of n2n�1 mathes the general upper bound of 23 .4 ConlusionWe have proven an upper bound of 23 for all fair algorithms. We have also shown that any fairalgorithm aepts at least half of the items, and that some algorithms do signi�antly betterfor very small n. It is left as an open problem to design a fair algorithm with a ompetitiveratio signi�antly larger than 12 for any n, or prove that this is not possible. It is also unknownhow muh unfair algorithms an be better; the best negative result for those is 67 , whih holdseven for idential bins [7℄.Aknowledgment: We would like to thank Joan Boyar for reading and ommenting on thepaper. We also thank the editor Gerhard Woeginger for suggesting the title.Referenes1. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-Line Routing of Virtual Ciruits with Appli-ations to Load Balaning and Mahine Sheduling. Journal of the ACM, 44(3):486{504, 1997. Also inPro. 25th ACM STOC, 1993, pp. 623-631.2. S. F. Assmann, D. S. Johnson, D. J. Kleitman, and J. Y. Leung. On a Dual Version of the One-DimensionalBin Paking Problem. Journal of Algorithms, 5:502{525, 1984.3. Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen. Fair versus UnrestritedBin Paking. Algorithmia (to appear). Preliminary version at SWAT 2000, volume 1851 of LNCS: 200-213,Springer-Verlag, 2000.4. P. Berman, M. Charikar, and M. Karpinski. On-Line Load Balaning for Related Mahines. Journal ofAlgorithms, 35:108{121, 2000.
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