Cormen 31.7-3

Assume we have an efficient function D4 that decrypts 1% of messages randomly chosen from Z,,.

Decrypt(C) > C = Pa(M) is the coded message that we want to decrypt
1. Repeat

2 Repeat

3. Z «— Random(0,n — 1)

4 until ged(Z,n) =1 > Z~ ! exists (Corollary 31.26)

5 M’ — DA(Pa(Z)-C)

6. until Po(M') = P4(Z)-C (modn) > M’ is a correct decryption of P4(Z) - C
7. return Z ‘M’

o If the algorithm terminates, it returns M:
This is easy to prove.

e Expected # random choices ~ 100:

— On the average the inner loop is executed ~ 1 time per execution of the outer loop:
o) _(p=Dlg=-1) ps—p—q+1 1 1 1

=1—-——-—- = —_—

n bq bq a p pPq
0100

P(ged(Z,n)=1) =
~ 1, since p,q > 1

— On the average the outer loop is executed ~ 100 times:
In the inner loop we choose random numbers from Z,,, until we find one that is in Z}.
Thus, in the outer loop we apply D4 to Pa(Z)-C, where Z is a number randomly cho-
sen from Z} . If we could assume that P4(Z) - C were a number randomly chosen from
Z,,, we would clearly be done. However, it is sufficient to assume that it is randomly
chosen from Z:

7y, C Zy, and

Zn =23 _n—=0(n) pg—(-1(g=1) g+p-1

< 107100,

|23 n pq pq
Thus, even if all numbers in Z,, — Z;, are among those that D4 decrypts
correctly, D4 still correctly decrypts ~ 1% of the numbers in ZZ.

Hence, since Pa(Z) - C = Pa(Z) - Pa(M) = Pa(ZM) (modn), we just need to prove
that

Z randomly chosen from Z; = P4(ZM) randomly chosen from Z;
We prove this in two steps.

* 7 randomly chosen from Z! = ZM randomly chosen from Z:
Assume that M is random. Then P(ged(M,n) =1) =~ 1.
If gcd(M,n) = 1, then
ZiM = ZoM (modn) = Ziy = Z; (modn),
ie., MZ; = Z. In other words, f(Z) = ZM mod n is a one-to-one map from Z
to Z,.
* ZM randomly chosen from Z! = P4(ZM) randomly chosen from Z:
Py(ZM) = (ZM)® mod n = Z¢M* mod n.
If ged(M,n) = 1, then for any 71,7, € Z7,,
ZEM® = ZEM® (modn) = (Z;He ' ZiMe(M 1) = (Z;He L ZzsMe(M~1)¢ (modn)
= Z1 =75 (modn)



