Cormen 31.7-3

Assume we have an efficient function D_A that decrypts 1% of messages randomly chosen from \mathbb{Z}_n .

 $\underline{\operatorname{Decrypt}}(C) \qquad \rhd C = P_A(M)$ is the coded message that we want to decrypt

- 1. Repeat
- 2. Repeat
- 3. $Z \leftarrow \text{Random}(0, n-1)$
- 4. until gcd(Z, n) = 1 $\triangleright Z^{-1}$ exists (Corollary 31.26)
- 5. $M' \leftarrow D_A(P_A(Z) \cdot C)$
- 6. until $P_A(M') \equiv P_A(Z) \cdot C \pmod{n}$ $\Rightarrow M'$ is a correct decryption of $P_A(Z) \cdot C$
- 7. return $Z^{-1}M'$
 - If the algorithm terminates, it returns M: This is easy to prove.
 - Expected # random choices ≈ 100 :
 - On the average the inner loop is executed ≈ 1 time per execution of the outer loop:

$$\begin{split} P(\gcd(Z,n) = 1) &= \frac{\phi(n)}{n} = \frac{(p-1)(q-1)}{pq} = \frac{pq - p - q + 1}{pq} = 1 - \frac{1}{q} - \frac{1}{p} + \frac{1}{pq} \\ &\approx 1, \text{ since } p, q > 10^{100} \end{split}$$

- On the average the outer loop is executed ≈ 100 times: In the inner loop we choose random numbers from \mathbb{Z}_n , until we find one that is in \mathbb{Z}_n^* . Thus, in the outer loop we apply D_A to $P_A(Z) \cdot C$, where Z is a number randomly chosen from \mathbb{Z}_n^* . If we could assume that $P_A(Z) \cdot C$ were a number randomly chosen from \mathbb{Z}_n , we would clearly be done. However, it is sufficient to assume that it is randomly chosen from \mathbb{Z}_n^* :

$$\mathbb{Z}_n^* \subseteq \mathbb{Z}_n$$
 and

$$\frac{|\mathbb{Z}_n - \mathbb{Z}_n^*|}{|\mathbb{Z}_n^*|} = \frac{n - \phi(n)}{n} = \frac{pq - (p-1)(q-1)}{pq} = \frac{q + p - 1}{pq} < 10^{-100}.$$

Thus, even if all numbers in $\mathbb{Z}_n - \mathbb{Z}_n^*$ are among those that D_A decrypts correctly, D_A still correctly decrypts $\approx 1\%$ of the numbers in \mathbb{Z}_n^* .

Hence, since $P_A(Z) \cdot C = P_A(Z) \cdot P_A(M) \equiv P_A(ZM) \pmod{n}$, we just need to prove that

Z randomly chosen from $\mathbb{Z}_n^* \Rightarrow P_A(ZM)$ randomly chosen from \mathbb{Z}_n^*

We prove this in two steps.

* Z randomly chosen from $\mathbb{Z}_n^* \Rightarrow ZM$ randomly chosen from \mathbb{Z}_n^* : Assume that M is random. Then $P(\gcd(M,n)=1)\approx 1$. If $\gcd(M,n)=1$, then

$$Z_1 M \equiv Z_2 M \pmod{n} \Rightarrow Z_1 \equiv Z_2 \pmod{n},$$

i.e., $M\mathbb{Z}_n^* = \mathbb{Z}_n^*$. In other words, $f(Z) = ZM \mod n$ is a one-to-one map from \mathbb{Z}_n^* to \mathbb{Z}_n^* .

* ZM randomly chosen from $\mathbb{Z}_n^* \Rightarrow P_A(ZM)$ randomly chosen from \mathbb{Z}_n^* : $P_A(ZM) = (ZM)^e \mod n = Z^eM^e \mod n$. If $\gcd(M,n) = 1$, then for any $Z_1, Z_2 \in \mathbb{Z}_n^*$,

$$Z_1^e M^e \equiv Z_2^e M^e \pmod{n} \Rightarrow (Z_1^{-1})^{e-1} Z_1^e M^e (M^{-1})^e \equiv (Z_2^{-1})^{e-1} Z_2^e M^e (M^{-1})^e \pmod{n}$$

 $\Rightarrow Z_1 \equiv Z_2 \pmod{n}$