Department of Mathematics and Computer Science April 11, 2013
University of Southern Denmark, Odense LMF

DM8&33 — Week 15

Monday, April 7

Lecture Subsections 1.0-1.1: Introduction to approximation algorithms, with Vertex
Cover as an example

Tuesday, April 8
Lecture Subsections 2.0-2.1: Set Cover and the Greedy Algorithm

Exercises Exercise 1.1

Friday, April 11
Lecture Subsection 3.2: TSP

Exercises

1. Exercise 1.3 (In the 2001 printing of the book, there is a typo in the hint: |S]
should be replaced by [].S|/2].)

2. Assume that you have an algorithm for finding a minimum vertex cover in a
graph. Explain how you can use the algorithm for finding a maximum indepen-
dent set.

Does this mean that you can use Algorithm 1.2 for approximating a maximum
independent set? (Hint: what approximation factor could you obtain?)

3. Although the vertex cover problem is NP-hard for general graphs, there are graph
classes that allow for efficient algorithms.

Design an algorithm that finds an optimal vertex cover for a tree in linear time.



Department of Mathematics and Computer Science April 14,2013
University of Southern Denmark, Odense LMF

DM&33 — Week 16

Monday, April 14

Lecture Section 3.1: The Steiner Tree problem

Exercises
1. Exercise 2.1

2. Exercise 2.2. Is the lower bound of 1/2 tight?



Department of Mathematics and Computer Science April 22,2013
University of Southern Denmark, Odense LMF

DM&33 — Week 17

Tuesday, April 22

Lecture Sections 4.0—4.1: Multiway cut
Exercises
1. Exercise 2.8

2. Consider the following algorithm for finding a TSP tour in a graph with metric
edge weights:

Vertices are added to the cycle one by one.

In each step, the vertex added is a vertex v whose distance to any of the vertices
already in the cycle is minimum.

Assume that the vertex closest to v is u. Then, v is added to the cycle just after
u.

Prove that the algorithm is a 2-approximation algorithm.
Hint: Note the similarity to Prim’s algorithm for finding a minimum spanning
tree.

3. Let GG be a complete undirected graph with nonnegative edge weights. Consider
the following transformation:

Let W be the maximum weight in G.
For each edge e, add W to the weight of e.
Call the resulting weighted graph G'.

Argue that the weights in G’ are metric.

Argue that a TSP tour in G is optimal, iff the corresponding tour in G’ is optimal
for G'.

Does this contradict Theorem 3.6?



Department of Mathematics and Computer Science May 4, 2013
University of Southern Denmark, Odense LMF

DM&33 — Week 18

Monday, April 28

Lecture Sections 5.0-5.1: The k-Center problem and parametric pruning
Exercises

1. Let G be a complete undirected graph with nonnegative edge weights. Consider
the following transformation:

Let W be the maximum weight in G.
For each edge e, add W to the weight of e.
Call the resulting weighted graph G'.

On Tuesday, April 22, we proved that the weights in G’ are metric.

e Argue that a TSP tour in G is optimal, iff the corresponding tour in G’ is
optimal for G”.

e Does this contradict Theorem 3.6?

e What about using the metric closure of G instead of G’ (as we did for the
Steiner tree problem)?

2. Describe an algorithm for finding an Euler tour in a graph where all vertices have
even degree.

3. Exercise 3.3

Wednesday, April 30

Lecture
e Theorem 5.7

e Section 8.1: Knapsack — a pseudo-polynomial dynamic programming algorithm

Exercises Exercise 4.2



Department of Mathematics and Computer Science May 10, 2013
University of Southern Denmark, Odense LMF

DM&33 — Week 19

Friday, May 9

Lecture
e Section 8.2: A FPTAS for Knapsack
e Section 8.3: Strong NP-hardness

e Section 9.0: Introduction to Bin Packing

Exercises

1. Describe an efficient implementation of Algorithm 5.3. Hint: Is it necessary to
construct the square of G; explicitly?

2. Exercise 5.1



Department of Mathematics and Computer Science May 14, 2013
University of Southern Denmark, Odense LMF

DM&33 — Week 20

Monday, May 12

Lecture

e Section 9.1: An asymptotic PTAS for bin packing

Exercises
1. Exercise 8.1

2. Exercise 8.2

Wednesday, May 14

Lecture
e Sections 12.1 and 12.3

e Section 13.1 up to Lemma 13.2

Exercises

1. Give an optimal Knapsack algorithm with running time O(nB) using dynamic
programming.

2. Exercise 8.4
3. Explain the proof of Theorem 8.5

4. Explain the proof of Corollary 8.6



Department of Mathematics and Computer Science May 23, 2013
University of Southern Denmark, Odense LMF

DM&33 — Week 21

Tuesday, May 20

Lecture
e A short recap of Section 13.1 up to Lemma 13.2

e Lemma 13.2 and Theorem 13.3

Exercises

1. Exercise 9.1
Hint: It is sufficient to use three different item sizes.
If you canpot ﬁn.d asequence giving a ratio of %, try to find a sequence with just
two item sizes giving a ratio of %

2. Exercise 9.2
3. Exercise 9.4
4. Exercise 9.5

Wednesday, May 21
Lecture

e Section 13:2: Dual Fitting applied to Constrained Set Multicover

Exercises
1. Exercise 13.1
2. Exercise 13.2
3. Exercise 13.3

Friday, May 23
Lecture

e Chapter 14: LP-Rounding Applied to Set Cover

Exercises

1. Exercise 13.4.1



Department of Mathematics and Computer Science May 28, 2013
University of Southern Denmark, Odense LMF

DM&33 — Week 22

Monday, May 26

Lecture

e Chapter 15: The Primal-Dual schema applied to Set Cover

Exercises

1. Example 14.3 uses an instance with n* elements. Could the instance be simpli-
fied to use fewer elements and still and still give the same factor? It should be
possible to get down to n elements.

2. Exercise 14.1

Wednesday, May 28
Exercises

1. Write an LP-formulation of the vertex cover problem (unweighted version). Write
the dual problem as well. What combinatorial problem does the dual problem
correspond to?

2. Exercise 14.3. Only the part about Set MultiCover.
3. Exercise 14.4.
4. Exercise 14.5

5. Exercise 15.5.
Note that what you are asked to do in the first part of the exercise is to find a
primal-dual algorithm with an approximation guarantee of %
Hint 1: Since this is a maximization problem, the primal and dual problems swap
roles compared to what we did for the set cover problem.
Hint 2: When choosing an unsatisfied constraint, choose one with maximum
right-hand side.



