
Lecture 4
Adversarial Search

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Outline

♦ Games
♦ Perfect play

– minimax decisions
– α–β pruning

♦ Resource limits and approximate evaluation
♦ Games of chance ♦ Games of imperfect information

2

Multiagent environments

Multi agent environments:

cooperative

competitive è adversarial search in games

AI game theory (combinatorial game theory)

deterministic

turn taking

two players

zero sum games = utility values equal and opposite

perfect information

agents are restricted to a small number of actions described by rules

“Classical” game theory includes cooperation, chance, imperfect knowledge,
simultaneously moves and they tend to represent real-life decision making
situations.

3

Types of Games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe

4

Games vs. search problems
“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply è contingency stratery

Optimal strategy: the one that leads to outcomes at least as good as any
other strategy when one is playing an infallibile opponent

Search problem è game tree

initial state: game tree

successor function: game rules

terminal test (is the game over)

utility function, gives a value for terminal nodes (eg, +1, -1)

Terminology:

Two players called MAX and MIN.

MAX searches the search tree.

Ply: one turn taken by one of the players from “reply”. [A. Samuel 1959]
5

Game tree (2-player, deterministic, turns)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

7

Measures of Game Complexity

state-space complexity: number of legal game positions reachable from
the initial position of the game.

an upper bound can often be computed by including illegal positions
Eg, TicTacToe:
39 = 19.683
5.478 after removal of illegal
765 essentially different positions after eliminating symmetries

game tree size: total number of possible games that can be played:
number of leaf nodes in the game tree rooted at the game’s initial
position.

Eg: TicTacToe:
9! = 362.880 possible games
255.168 possible games halting when one side wins
26.830 after removal of rotations and reflections

8 9

First three levels of the tic-tac-toe state space reduced by symmetry: 12× 7!

10

Measures of Game Complexity

game-tree complexity: number of leaf nodes in the smallest full-width
decision tree that establishes the value of the initial position.
A full-width tree includes all nodes at each depth.
estimates the number of positions to evaluate in a minimax search to
determine the value of the initial position.

approximation: game’s average branching factor to the power of the
number of plies in an average game.
Eg.: chess For chess, b ≈ 35, m ≈ 100 for “reasonable” games

⇒ exact solution completely infeasible

computational complexity applies to generalized games
(eg, n× n boards)
Eg: TicTacToe:
m× n board k in a row solved in DSPACE(mn) by searching the
entire game tree

11

Historical view

Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:
Computer considers possible lines of play (Babbage, 1846)
Algorithm for perfect play - MINIMAX - (Zermelo, 1912; Von Neumann,
1944)
Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)
First chess program (Turing, 1951)
Machine learning to improve evaluation accuracy (Samuel, 1952–57)
Pruning to allow deeper search - α− β alg. - (McCarthy, 1956)

12

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value (utility for MAX)
= best achievable payoff against best play

E.g., 2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

3 2 2

13

Minimax algorithm

function Minimax-Decision(state) returns an action
inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←−∞
for a, s in Successors(state) do v←Max(v, Min-Value(s))
return v

function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←∞
for a, s in Successors(state) do v←Min(v, Max-Value(s))
return v

14

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? O(bm)
Space complexity?? O(bm) (depth-first exploration)

But do we need to explore every path?

15

Resource limits

Standard approaches:

n-ply lookahead: depth-limited search

heuristic descent

heuristic cutoff

1. Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)

2. Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

16

Heuristic Descent

Heuristic measuring conflict applied to states of tic-tac-toe

17

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

18

Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval
Only the order matters:

payoff in deterministic games acts as an ordinal utility function

19

Example

20

α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

21

Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to MAX) found so far off the current path
If V is worse than α, MAX will avoid it ⇒ prune that branch
Define β similarly for MIN

22

The α–β algorithm

function Alpha-Beta-Decision(state) returns an action
return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state,α,β) returns a utility value
inputs: state, current state in game

α, value of best alternative for MAX along the path to state
β, value of best alternative for MIN along the path to state

if Terminal-Test(state) then return Utility(state)
v←−∞
for a, s in Successors(state) do

v←Max(v, Min-Value(s,α,β))
if v ≥ β then return v
α←Max(α, v)

return v

v←∞
for a, s in Successors(state) do

v←Min(v, Max-Value(s,α,β))
if v ≤ α then return v
β←Min(β, v)

return v

function Min-Value(state,α,β) returns a utility value
same as Max-Value but with roles of α,β reversed

23

Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which computations
are relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!

24

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect play
for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who
are too good.

Go: human champions refuse to compete against computers, who are
too bad. In go, b > 300, so most programs use pattern knowledge bases
to suggest plausible moves.

25

Nondeterministic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25
26

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

27

Algorithm for nondeterministic games

Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:
. . .
if state is a Max node then

return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then

return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then

return average of ExpectiMinimax-Value of Successors(state)
. . .

28

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval
≈ world-champion level

29

Digression: Exact values DO matter

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

Behaviour is preserved only by positive linear transformation of Eval
Hence Eval should be proportional to the expected payoff

30

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game∗

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗

Special case: if an action is optimal for all deals, it’s optimal.∗

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

31

Example

Four-card bridge/whist/hearts hand, MAX to play first

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
0

6

4

8

9 2

6 6 8 7 6 6 7 6 6 7 6 6 7 7

2 9 3 2 9 3 2 3 3 3
0

4444

6

6

4

8

9 2

6 6 8 7 6 6 7 6 6 7

2 9 3 2 9 3 2 3

7

3

6

4
6 6 7

3444
6

6

7

34

−0.5

−0.5

MAX

MIN

MAX

MIN

MAX

MIN

32

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll be run over by a bus;
take the right fork and you’ll find a mound of jewels.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

guess correctly and you’ll find a mound of jewels;
guess incorrectly and you’ll be run over by a bus.

33

Proper analysis

* Intuition that the value of an action is the average of its values
in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
♦ Acting to obtain information
♦ Signalling to one’s partner
♦ Acting randomly to minimize information disclosure

34

Summary

Games are fun to work on! (and dangerous)
They illustrate several important points about AI
♦ perfection is unattainable ⇒ must approximate
♦ good idea to think about what to think about
♦ uncertainty constrains the assignment of values to states
♦ optimal decisions depend on information state, not real state

35

