Outline

Lecture 4 Adversarial Search

Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark \diamond Games

\diamond Perfect play

- minimax decisions
- α – β pruning
- \diamond Resource limits and approximate evaluation
- \diamondsuit Games of chance \diamondsuit Games of imperfect information

Slides by Stuart Russell and Peter Norvig

Multiagent environments

Multi agent environments:

- cooperative
- competitive **>** adversarial search in games

Al game theory (combinatorial game theory)

- deterministic
- turn taking
- two players
- zero sum games = utility values equal and opposite
- perfect information
- agents are restricted to a small number of actions described by rules

"Classical" game theory includes cooperation, chance, imperfect knowledge, simultaneously moves and they tend to represent real-life decision making situations.

Types of Games

3

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon monopoly
imperfect information	battleships, blind tictactoe	bridge, poker, scrabble nuclear war

Games vs. search problems

Game tree (2-player, deterministic, turns)

"Unpredictable" opponent \Rightarrow solution is a strategy

specifying a move for every possible opponent reply \blacktriangleright contingency stratery

Optimal strategy: the one that leads to outcomes at least as good as any other strategy when one is playing an infallibile opponent

Search problem ➡ game tree

- initial state: game tree
- successor function: game rules
- terminal test (is the game over)
- utility function, gives a value for terminal nodes (eg, +1, -1)

Terminology:

Two players called MAX and MIN.

MAX searches the search tree.

Ply: one turn taken by one of the players from "reply". [A. Samuel 1959]

Measures of Game Complexity

• state-space complexity: number of legal game positions reachable from the initial position of the game.

an upper bound can often be computed by including illegal positions Eg, TicTacToe: $3^9 = 19.683$ 5.478 after removal of illegal

765 essentially different positions after eliminating symmetries

• game tree size: total number of possible games that can be played: number of leaf nodes in the game tree rooted at the game's initial position.

Eg: TicTacToe: 9! = 362.880 possible games 255.168 possible games halting when one side wins 26.830 after removal of rotations and reflections

7

9

Measures of Game Complexity

First three levels of the tic-tac-toe state space reduced by symmetry: $12\times7!$

Historical view

Time limits \Rightarrow unlikely to find goal, must approximate

Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play MINIMAX (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952-57)
- $\bullet\,$ Pruning to allow deeper search $\alpha-\beta$ alg. (McCarthy, 1956)

game-tree complexity: number of leaf nodes in the smallest full-width decision tree that establishes the value of the initial position. A full-width tree includes all nodes at each depth. estimates the number of positions to evaluate in a minimax search to determine the value of the initial position.

approximation: game's average branching factor to the power of the number of plies in an average game. Eg.: chess For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games

g.: chess For chess, $b \approx 35$, $m \approx 100$ for reasonable gam \Rightarrow exact solution completely infeasible

• computational complexity applies to generalized games (eg, $n \times n$ boards) Eg: TicTacToe: $m \times n$ board k in a row solved in DSPACE(mn) by searching the entire game tree

10

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value (~~utility for MAX) = best achievable payoff against best play

E.g., 2-ply game:

Minimax algorithm

function Minimax-Decision(state) returns an action
inputs: state, current state in game
return the a in Actions(state) maximizing Min-Value(Result(a, state))

```
function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v \leftarrow -\infty
for a, s in Successors(state) do v \leftarrow Max(v, Min-Value(s))
return v
```

```
function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v \leftarrow \infty
for a, s in Successors(state) do v \leftarrow Min(v, Max-Value(s))
return v
```

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this) Optimal?? Yes, against an optimal opponent. Otherwise?? Time complexity?? $O(b^m)$ Space complexity?? O(bm) (depth-first exploration)

But do we need to explore every path?

14

Resource limits

Standard approaches:

- n-ply lookahead: depth-limited search
- heuristic descent
- heuristic cutoff
 - 1. Use Cutoff-Test instead of Terminal-Test e.g., depth limit (perhaps add quiescence search)
 - 2. Use Eval instead of Utility i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^4 nodes/second $\Rightarrow 10^6$ nodes per move $\approx 35^{8/2}$

Heuristic Descent

Heuristic measuring conflict applied to states of tic-tac-toe

O(n) is total of Opponent's possible winning lines E(n) is the total Evaluation for state n

Evaluation functions

White slightly better

Black winning

For chess, typically linear weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

e.g., $w_1 = 9$ with $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Example

Digression: Exact values don't matter

Behaviour is preserved under any **monotonic** transformation of Eval Only the order matters: payoff in deterministic games acts as an ordinal utility function

 $\alpha - \beta$ pruning example

18

Why is it called $\alpha - \beta$?

 α is the best value (to MAX) found so far off the current path If V is worse than α , MAX will avoid it \Rightarrow prune that branch Define β similarly for MIN

Properties of $\alpha - \beta$

- Pruning does not affect final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering," time complexity = $O(b^{m/2})$ \Rightarrow doubles solvable depth
- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)
- Unfortunately, 35^{50} is still impossible!

The $\alpha - \beta$ algorithm

22

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.
- Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games: backgammon

Algorithm for nondeterministic games

Expectiminimax gives perfect play Just like Minimax, except we must also handle chance nodes:

....

if *state* is a Max node then

return the highest ExpectiMinimax-Value of Successors(*state*) **if** *state* is a Min node **then**

return the lowest ExpectiMinimax-Value of Successors(*state*) **if** *state* is a chance node **then**

return average of ExpectiMinimax-Value of Successors(state)

. . .

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice Backgammon \approx 20 legal moves (can be 6,000 with 1-1 roll)

depth $4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$

- As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished
- $\alpha \beta$ pruning is much less effective
- TDGammon uses depth-2 search + very good Eval \approx world-champion level

Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of Eval Hence Eval should be proportional to the expected payoff

Games of imperfect information

- E.g., card games, where opponent's initial cards are unknown
- Typically we can calculate a probability for each possible deal
- Seems just like having one big dice roll at the beginning of the game*
- Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*
- Special case: if an action is optimal for all deals, it's optimal.*
- GIB, current best bridge program, approximates this idea by
 1) generating 100 deals consistent with bidding information
 2) picking the action that wins most tricks on average

30

Example

Four-card bridge/whist/hearts hand, MAX to play first

Commonsense example

Road A leads to a small heap of gold pieces Road B leads to a fork:

> take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces Road B leads to a fork:

take the left fork and you'll be run over by a bus; take the right fork and you'll find a mound of jewels.

Road A leads to a small heap of gold pieces Road B leads to a fork:

guess correctly and you'll find a mound of jewels; guess incorrectly and you'll be run over by a bus.

Proper analysis

Summary

 \ast Intuition that the value of an action is the average of its values in all actual states is $\ensuremath{\mathsf{WRONG}}$

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

- \diamond Acting to obtain information
- \diamondsuit Signalling to one's partner
- \diamondsuit Acting randomly to minimize information disclosure

Games are fun to work on! (and dangerous)

- They illustrate several important points about AI
- $\diamondsuit\$ perfection is unattainable \Rightarrow must approximate
- $\diamondsuit\,$ good idea to think about what to think about
- \diamondsuit uncertainty constrains the assignment of values to states
- \diamondsuit optimal decisions depend on information state, not real state