
Lecture 7
Logical Agents

Inference in First Order Logic

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

4 Introduction
4 Artificial Intelligence
4 Intelligent Agents

4 Search
4 Uninformed Search
4 Heuristic Search

4 Adversarial Search
4 Minimax search
4 Alpha-beta pruning

Knowledge representation and
Reasoning

4 Propositional logic
4 First order logic

Inference

Uncertain knowledge and
Reasoning

Probability and Bayesian
approach
Bayesian Networks
Hidden Markov Chains
Kalman Filters

Learning
Decision Trees
Maximum Likelihood
EM Algorithm
Learning Bayesian Networks
Neural Networks
Support vector machines

2

Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB

3

Outline

♦ Reducing first-order inference to propositional inference
♦ Unification
♦ Generalized Modus Ponens
♦ Forward and backward chaining
♦ Logic programming
♦ Resolution

4

A brief history of reasoning

450b.c. Stoics propositional logic, inference (maybe)
322b.c. Aristotle “syllogisms” (inference rules), quantifiers
1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 Gödel ∃ complete algorithm for FOL
1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Gödel ¬∃ complete algorithm for arithmetic
1960 Davis/Putnam “practical” algorithm for propositional logic
1965 Robinson “practical” algorithm for FOL—resolution

5

Definitions

For a predicate calculus expression X and an interpretation I:

If X has a value of T under I and a particular variable assignment, then
I is said to satisfy X.

If I satisfies X for all variable assignments, then I is a model of X

X is satisfiable if and only if there exist an interpretation and variable
assignment that satisfy it; otherwise, it is unsatisfiable

If a set of expressions is not satisfiable, it is said to be inconsistent

If X has a value T for all possible interpretations, X is said to be valid.
Eg.: (p(X) ∧ ¬p(X)) while ∃X(P (X) ∨ ¬p(X))

6

Definition
A Proof Procedure is a combination of an inference rule and an algorithm for
applying that rule to a set of logical expressions to generate new sentences.

Eg: Resolution inference rule.

Definition
A predicate calculus expression X logically follows from a set S of predicate
calculus expressions if every interpretation and variable assignment that
satisfies S also satisfies X.

An inference rule is sound if every predicate calculus expression produced by
the rule from a set S of predicate calculus expressions also logically follows
from S.

An inference rule is complete if, given a set S of predicate calculus
expressions, the rule can infer every expression that logically follows from S.

7

Rules of Inference for Propositions

Rule of inference Name
p
p→ q

∴ q
Modus Ponens

¬q
p→ q

∴ ¬p
Modus tollens

p→ q
q → r

∴ p→ r
Hypothetical syllogism

p ∨ q
¬p

∴ q
Disjunctive syllogism

Rule of inference Name

p
∴ p ∨ q

Addition

p ∨ q
∴ p

Simplification

p
q

∴ p ∨ q
Conjunction

p ∨ q
¬p ∨ r

∴ q ∨ r
Resolution

8

Rules of Inference for Quantified Statements

Rule of inference Name

∀x P (x)
∴ P (c)

Universal instantiation

P (c) for an arbitrary c
∴ ∀xP (x)

Universal generalization

∃x P (x)
∴ P (c) for some element c

Existential instantiation

P (c) for some element c
∴ ∃xP (x)

Existential generalization

9

Universal instantiation (UI)

Every instantiation of a universally quantified sentence α is entailed by it:

∀ v α
∴ Subst({v/c}, α)

for any variable v and ground term c. (Note, here we used prolog notation.)

E.g., ∀x King(x) ∧Greedy(x) =⇒ Evil(x) yields

King(John) ∧Greedy(John) =⇒ Evil(John)
King(Richard) ∧Greedy(Richard) =⇒ Evil(Richard)
King(Father(John)) ∧Greedy(Father(John)) =⇒ Evil(Father(John))
...

10

Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

∃ v α
∴ Subst({v/k}, α)

E.g., ∃x Crown(x) ∧OnHead(x, John) yields

Crown(C1) ∧OnHead(C1, John)

provided C1 is a new constant symbol, called a Skolem constant

Another example: from ∃x d(xy)/dy=xy we obtain

d(ey)/dy= ey

provided e is a new constant symbol

11

Existential instantiation contd.

UI can be applied several times to add new sentences;
the new KB is logically equivalent to the old

EI can be applied once to replace the existential sentence;
the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

12

Reduction to propositional inference

Suppose the KB contains just the following:

∀x King(x) ∧Greedy(x) =⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) ∧Greedy(John) =⇒ Evil(John)
King(Richard) ∧Greedy(Richard) =⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John),King(Richard), etc.

and can therefore be solved by the methods seen with propositional logic
13

Reduction to propositional inference (contd.)

Claim: a ground sentence is entailed by new KB iff entailed by original
KB

Claim: every FOL KB can be propositionalized so as to preserve
entailment

Idea: propositionalize KB and query, apply resolution, return result

Problem: with variables and function symbols, there are infinitely many
ground terms,

e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is
semidecidable

14

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

∀x King(x) ∧Greedy(x) =⇒ Evil(x)
King(John)
∀ y Greedy(y)
Brother(Richard, John)

it seems obvious that Evil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p · nk instantiations
With function symbols, it gets much much worse!

15

Unification

We can get the inference immediately if we can find a substitution σ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

σ = {x/John, y/John} works
Unify(α, β) = σ if ασ=βσ

p q σ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y,OJ) {x/OJ, y/John}
Knows(John, x) Knows(y,Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x,OJ) fail

Standardizing apart: rename variables to eliminate name overlap, e.g.,
Knows(z,OJ)

16

Generalized Modus Ponens (GMP)

Any inference in FOL has to use unification
Here is an inference rule with the use of unification

p1
′, p2

′, . . . , pn
′

(p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)
∴ qσ

where pi
′σ= piσ for all i

p1
′ is King(John) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

σ is {x/John, y/John} q is Evil(x)
qσ is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

17

Soundness of GMP

Need to show that

p1
′, . . . , pn

′, (p1 ∧ . . . ∧ pn ⇒ q) |= qσ

provided that pi
′σ= piσ for all i

Lemma: For any definite clause p, we have p |= pσ by UI
1. (p1 ∧ . . . ∧ pn ⇒ q) |= (p1 ∧ . . . ∧ pn ⇒ q)σ= (p1σ ∧ . . . ∧ pnσ ⇒ qσ)
2. p1

′, . . . , pn
′ |= p1

′ ∧ . . . ∧ pn
′ |= p1

′σ ∧ . . . ∧ pn
′σ

3. From 1 and 2, qσ follows by ordinary Modus Ponens

18

Unification

Unification: search substitution that match two expressions

constants (ground instances) cannot be substituted

only variables can be substituted

cannot substitute x by p(x) creates infinite regression
occur check

a variable can be substituted with another variable

future substitutions must be consistent (substitution sequence)
Composition of substitutions:

{Y/X,Z/W}; {X/V }; {V/a,W/f(b))}

19

Unification

Unifiers must be as general as possible otherwise eliminate possibility for
future solutions:
Eg: p(X), p(Y) and {X/fred, Y/fred}

Definition
If µ is any unifier of expressions E and σ is a most general unifier then for µ
applied to E there exists µ′ such that Eσ = Eσµ′ where Eµ and Eσµ′ is
the composition of unifiers.

mgu is unique (except for relabelling)

20

An Unification Algorithm

21

Conversion to Clausal Form

Definition
We call clausal form any formula where all variables are universally quantified
and the quantifier-free part is in CNF.

Any formula can be transformed into an equisatisfiable clausal form.
We obtain it by a number of transformations.

22

Forward Chaining

Definition
Definite Clauses: Disjunction clauses of literals of which at most one is
positive.
(Eg. ¬p ∨ ¬q ∨ r)
They are are equivalent to implications whose premise is a conjunction of
positive literals and conclusion is a single positive literal
(Eg: (p ∧ q) =⇒ r)

It is advisable building systems that only definite clauses so that reasoning is
done by forward chaining rather than resolution that is much more costly.

23

Example knowledge base

The law says that it is a crime for an Dane to sell weapons to hostile nations.
The country Nono, an enemy of Denmark, has some missiles, and all of its
missiles were sold to it by Colonel Thor, who is Dane.

Prove that Col. Thor is a criminal

24

Example knowledge base contd.

. . . it is a crime for an Dane to sell weapons to hostile nations:
Dane(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) =⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel Thor
∀x Missile(x) ∧Owns(Nono, x) =⇒ Sells(Thor, x,Nono)

Missiles are weapons:
Missile(x)⇒Weapon(x)

An enemy of Denmark counts as “hostile”:
Enemy(x,Denmark) =⇒ Hostile(x)

Thor, who is Dane . . .
Dane(Thor)

The country Nono, an enemy of Denmark . . .
Enemy(Nono,Denmark)

25

Forward chaining algorithm

function FOL-FC-Ask(KB,α) returns a substitution or false

repeat until new is empty
new←{}
for each sentence r in KB do

(p1 ∧ . . . ∧ pn =⇒ q)← Standardize-Apart(r)
for each δ such that (p1 ∧ . . . ∧ pn)δ = (p′

1 ∧ . . . ∧ p′
n)δ

for some p′
1, . . . , p

′
n in KB

q ′← Subst(δ, q)
if q ′ is not a renaming of a sentence already in KB or new

then do
add q ′ to new
σ←Unify(q ′,α)
if σ is not fail then return σ

add new to KB
return false

26

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

27

Properties of forward chaining

For first-order definite clauses the algorithm is:
- Sound because application of generalized modus ponens
- Complete (proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p · nk literals

May not terminate in general (with functions) if α is not entailed
This is unavoidable: entailment with definite clauses is semidecidable

28

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn’t added on iteration k − 1

=⇒ match each rule whose premise contains a newly added literal

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

e.g., query Missile(x) retrieves Missile(M1)
Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases

29

Hard matching example

Victoria

WA

NT

SA

Q

NSW

V

T

Diff(wa, nt) ∧ Diff(wa, sa) ∧
Diff(nt, q)Diff(nt, sa) ∧
Diff(q, nsw) ∧ Diff(q, sa) ∧
Diff(nsw, v)∧Diff(nsw, sa)∧
Diff(v, sa) =⇒ Colorable()

Diff(Red,Blue) Diff(Red,Green)

Diff(Green,Red) Diff(Green,Blue)

Diff(Blue,Red) Diff(Blue,Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

30

Backward chaining algorithm

function FOL-BC-Ask(KB,goals,σ) returns a set of substitutions
inputs: KB, a knowledge base

goals, a list of conjuncts forming a query (σ already applied)
σ, the current substitution, initially the empty substitution { }

local variables: answers, a set of substitutions, initially empty

if goals is empty then return {σ}
q ′← Subst(σ, First(goals))
for each sentence r in KB

where Standardize-Apart(r) = (p1 ∧ . . . ∧ pn ⇒ q)
and σ′←Unify(q, q ′) succeeds

new_goals← [p1, . . . , pn|Rest(goals)]
answers←FOL-BC-Ask(KB,new_goals, Compose(σ′,σ)) ∪ answers

return answers

31

Backward chaining example

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ } { }{ }{ }

{ } z/Nono{ }

{x/West, y/M1, z/Nono}

32

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
=⇒ fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
=⇒ fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

33

Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork, US) than x := x+ 2 !

34

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles

Program = set of clauses = head :- literal1, . . . literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as failure”)

e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead(joe) fails

35

Resolution: brief summary

Full first-order version:

`1 ∨ · · · ∨ `k
m1 ∨ · · · ∨mn

∴ (`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)σ

where Unify(`i,¬mj) =σ.

For example,

¬Rich(x) ∨ Unhappy(x)
Rich(Ken)

Unhappy(Ken)

with σ = {x/Ken}

 Apply resolution steps to CNF (KB ∧ ¬α); complete for FOL

36

Conversion to CNF

Everyone who loves all animals is loved by someone:
∀x [∀ y Animal(y) =⇒ Loves(x, y)] =⇒ [∃ y Loves(y, x)]

1. Eliminate biconditionals and implications

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]

2. Move ¬ inwards: ¬∀x, p ≡ ∃x ¬p, ¬∃x, p ≡ ∀x ¬p:
∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]
∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]

37

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

5. Drop universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

6. Distribute ∧ over ∨:

[Animal(F (x))∨Loves(G(x), x)]∧ [¬Loves(x, F (x))∨Loves(G(x), x)]

38

Resolution proof: definite clauses

American(West)

Missile(M1)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America) Enemy(Nono,America)

Criminal(x)Hostile(z)LSells(x,y,z)LWeapon(y)LAmerican(x)L > > > >

Weapon(x)Missile(x)L >

Sells(West,x,Nono)Missile(x)L Owns(Nono,x)L> >

Hostile(x)Enemy(x,America)L >

Sells(West,y,z)LWeapon(y)LAmerican(West)L > > Hostile(z)L>

Sells(West,y,z)LWeapon(y)L > Hostile(z)L>

Sells(West,y,z)L> Hostile(z)L>L Missile(y)

Hostile(z)L>L Sells(West,M1,z)

> > L Hostile(Nono)L Owns(Nono,M1)L Missile(M1)

> L Hostile(Nono)L Owns(Nono,M1)

L Hostile(Nono)

Criminal(West)L

39

