DM554/DM545
 Linear and Integer Programming

Lecture 1 Introduction

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Course Organization
2. Introduction

Resource Allocation
Duality

Outline

1. Course Organization

2. Introduction
 Resource Allocation
 Duality

Aims of the course

Learn about mathematical optimization:

- linear programming (continuous optimization)
- integer programming (discrete optimization)
\rightsquigarrow You will apply the tools learned to solve real life problems using computer software

Optimization Taxonomy

(NEOS Server, University of Wisconsin)

Contents of the Course

Linear Programming
1 Introduction - Linear Programming, Notation
2 Linear Programming, Simplex Method
3 Exception Handling
4 Duality Theory
5 Sensitivity
6 Revised Simplex Method

Integer Linear Programming
7 Modeling Examples, Good Formulations, Relaxations
8 Well Solved Problems
9 Network Optimization Models (Max Flow, Min cost flow, matching)
10 Cutting Planes \& Branch and Bound
11 More on Modeling

Practical Information

Teacher: Marco Chiarandini (www.imada.sdu.dk/~marco/) Instructor (Hold DM554-H1): Qingsong Guo (www.imada.sdu.dk/~qguo/) Instructor (Hold DM545-H1/O1): Bo Stentebjerg-Hansen Instructor (Hold DM545-H2): Marco

Alternative views of the schedule:

- mitsdu.sdu.dk, SDU Mobile
- Official course description (læserplanen)
- http://www.imada.sdu.dk/~marco/DM545
- http://www.imada.sdu.dk/~marco/Timetables/Semesters/F15/out/ DM545.html

Schedule:

- Introductory classes: 24 hours (12 classes)
- Training classes: 50 hours
- Exercises: 21 hours
- Laboratory: 4 hours

Communication Means

- BlackBoard (BB) \Leftrightarrow Main Web Page (WP) (link http://www.imada.sdu.dk/~marco/DM545)
- Announcements in BlackBoard
- Discussion Board in (BB) - allowed anonymous posting and rating
- Write to Marco (marco@imada.sdu.dk) and to instructors
- Ask peers
- You are welcome to visit me in my office in working hours (8-16)
$\rightsquigarrow \mathrm{It}$ is good to ask questions!!
\rightsquigarrow Please, let me know if you think we should do things differently!

Sources

Linear and Integer Programming Part:

MG J. Matousek and B. Gartner. Understanding and Using Linear Programming. Springer Berlin Heidelberg, 2007

Wo L.A. Wolsey. Integer programming. John Wiley \& Sons, New York, USA, 1998

Other books and articles:
HL Frederick S Hillier and Gerald J Lieberman, Introduction to Operations Research, 9th edition, 2010

Online coursees:

- Linear and Discrete Optimization with Friedrich Eisenbrand
- Linear and Integer Programming with Sriram Sankaranarayanan and Shalom D. Ruben

Course Material

Main Web Page (WP) is the main reference for list of contents (ie ${ }^{1}$, syllabus, pensum).

It contains:

- slides
- list of topics and references
- exercises
- links
- resources for programming tasks

$$
1_{\mathrm{ie}}=\mathrm{id} \text { est, eg }=\text { exempli gratia, wrt }=\text { with respect to }
$$

Assessment

- 5 ECTS
- Two obligatory Assignments, pass/fail, evaluation by teacher
- applied nature
- modeling + describing + programming in Python with Gurobi
- (language: Danish and/or English)
- individual
- Anonymous, peer review with rubrica
- 4 hour written exam, 7-grade scale, external censor
- theory part
- similar to exercises in class and past exams
- on June 22

Training Sessions

- Prepare them in advance to get out the most
- Best if carried out in small groups
- Exercises are examples of exam questions
- Exam rehearsal (in June?)

Who is here?

DM554 (10 ECTS)

24 officially registered

- Computer Science (2nd year, 4th semester)

Prerequisites

- Calculus (MM501, MM502)

DM545 (5 ECTS)

78 officially registered

- Computer Science (3rd year, 6th semester)
- Applied Mathematics (2nd year ?)
- Math-economy (3rd year ?)

Prerequisites

- Calculus (MM501, MM502)
- Linear Algebra (MM505)

Concepts from Linear Algebra

Linear Algebra: manipulation of matrices and vectors with some theoretical background

Linear Algebra
Matrices and vectors - Matrix algebra
Inner (dot) product
Geometric insight
Systems of Linear Equations - Row echelon form, Gaussian elimination
Matrix inversion and determinants
Rank and linear dependency

Coding

- gives you the ability to create new and useful artifacts with just your mind and your fingers,
- allows you to have more control of your world as more and more of it becomes digital,
- is just fun.

It can also help you understand math.
Being able to turn procedural ideas into code and run the code on concrete examples give you a great advantage in developing and reinforcing your understanding of mathematical concepts.
Beside:

- listening to lectures
- watching an instructor work through a derivation
- working through numerical examples by hand

You can learn by doing interacting with Python.
from Coding the Matrix by Philip Klein

- Python 2.7 or 3.4 ?
- ipython (= interactive python)?

Computers in Class

- Use computers in class only for course related purposes
- Note that research shows: taking notes by hand yields better long-term comprehension

```
http://www.psychologicalscience.org/index.php/news/
releases/
take-notes-by-hand-for-better-long-term-comprehensio
html
```


- However: the exam is digital!

Past Editions

According to 24 out of 56:

- The volume of work necessary to complete the course implied that its content could not be thoroughly comprehended (76% of respondents)
- The time given to understand the topics of the course was not sufficient ($68,2 \%$ of respondents).
- The standard of work expected was not always made clear (52.1% of respondents).
- The reading material consisting of parts from several textbooks in form of photocopies was not satisfactory (41% of respondents).

Past Editions

According to 24 out of 56:

- The written exam could not be thoroughly addressed during the time given.
- Only 39% of the respondent liked the course and found it stimulating the interest in the field of study.
- Students do not generally prepare themselves for the exercise sessions (69.1\% of respondents).
- Assumption of pre-knowledge on handling matrix notation and calculations (a few)

Outline

1. Course Organization
2. Introduction

Resource Allocation
Duality

What is Operations Research?

Operations Research (aka, Management Science, Analytics): is the discipline that uses a scientific approach to decision making.

It seeks to determine how best to design and operate a system, usually under conditions requiring the allocation of scarce resources, by means of mathematics and computer science.

Quantitative methods for planning and analysis.

It encompasses a wide range of problem-solving techniques and methods applied in the pursuit of improved decision-making and efficiency:

- simulation,
- mathematical optimization,
- queueing theory and other stochastic-process models,
- Markov decision processes
- econometric methods,
- data envelopment analysis,
- neural networks,
- expert systems,
- decision analysis, and the analytic hierarchy process.

Some Examples ...

- Production Planning and Inventory Control
- Budget Investment
- Blending and Refining
- Manpower Planning
- Crew Rostering (airline crew, rail crew, nurses)
- Packing Problems
- Knapsack Problem
- Cutting Problems
- Cutting Stock Problem
- Routing
- Vehicle Routing Problem (trucks, planes, trains ...)
- Locational Decisions
- Facility Location
- Scheduling/Timetabling
- Examination timetabling/ train timetabling
- + many more

Common Characteristics

- Planning decisions must be made
- The problems relate to quantitative issues
- Fewest number of people
- Shortest route
- Not all plans are feasible - there are constraining rules
- Limited amount of available resources
- It can be extremely difficult to figure out what to do

OR - The Process?

1. Observe the System
2. Formulate the Problem
3. Formulate Mathematical Model
4. Verify Model
5. Select Alternative
6. Show Results to Company
7. Implementation

Central Idea
Build a mathematical model describing exactly what one wants, and what the "rules of the game" are. However, what is a mathematical model and how?

Mathematical Modeling

- Find out exactly what the decision maker needs to know:
- which investment?
- which product mix?
- which job j should a person i do?
- Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding to the needs
- Formulate Objective Function computing the benefit/cost
- Formulate mathematical Constraints indicating the interplay between the different variables.

Outline

1. Course Organization
2. Introduction

Resource Allocation
Duality

Resource Allocation

In manufacturing industry, factory planning: find the best product mix.

Example

A factory makes two products standard and deluxe.
A unit of standard gives a profit of 6 k Dkk.
A unit of deluxe gives a profit of 8 k Dkk.
The grinding and polishing times in terms of hours per week for a unit of each type of product are given below:

	Standard	Deluxe
(Machine 1) Grinding	5	10
(Machine 2) Polishing	4	4

Grinding capacity: 60 hours per week
Polishing capacity: 40 hours per week
Q: How much of each product, standard and deluxe, should we produce to maximize the profit?

Mathematical Model

Decision Variables
$x_{1} \geq 0$ units of product standard
$x_{2} \geq 0$ units of product deluxe

Object Function
$\max 6 x_{1}+8 x_{2}$ maximize profit

Constraints

$$
\begin{aligned}
& 5 x_{1}+10 x_{2} \leq 60 \text { Grinding capacity } \\
& 4 x_{1}+4 x_{2} \leq 40 \text { Polishing capacity }
\end{aligned}
$$

Mathematical Model

Machines/Materials A and B Products 1 and 2

Graphical Representation:

$$
\begin{aligned}
& \max 6 x_{1}+8 x_{2} \\
& 5 x_{1}+10 x_{2} \leq 60 \\
& 4 x_{1}+4 x_{2} \leq 40 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

Resource Allocation - General Model

Managing a production facility

$$
\begin{aligned}
& j=1,2, \ldots, n \text { products } \\
& i=1,2, \ldots, m \text { materials } \\
& b_{i} \text { units of raw material at disposal } \\
& a_{i j} \text { units of raw material } i \text { to produce one unit of product } j \\
& \sigma_{j} \text { market price of unit of } j \text { th product } \\
& \rho_{i} \text { prevailing market value for material } i \\
& c_{j}=\sigma_{j}-\sum_{i=1}^{n} \rho_{i} a_{i j} \text { profit per unit of product } j \\
& x_{j} \text { amount of product } j \text { to produce } \\
& \max \quad c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}=z \\
& \text { subject to } \begin{array}{l}
a_{11} x_{1}
\end{array}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \ldots, x_{n} \leq 0
\end{aligned}
$$

Notation

$$
\begin{aligned}
& \max c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}=z \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\max \sum_{j=1}^{n} c_{j} x_{j} & \\
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i}, \quad i=1, \ldots, m \\
x_{j} & \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

In Matrix Form

$$
\begin{aligned}
& \max c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}=z \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0 \\
& \mathbf{c}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right], \quad A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{31} & a_{32} & \ldots & a_{m n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] \\
& \begin{aligned}
\max \quad z & =\mathbf{c}^{\top} \mathbf{x} \\
A \mathbf{x} & \leq \mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
\end{aligned}
$$

Our Numerical Example

$$
\begin{aligned}
\max \quad \sum_{j=1}^{n} c_{j} x_{j} & \\
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i}, \quad i=1, \ldots, m \\
x_{j} & \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

$\max \mathbf{c}^{\boldsymbol{T}} \mathbf{x}$

$$
\begin{array}{r}
A \mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{array}
$$

$\mathbf{x} \in \mathbb{R}^{n}, \mathbf{c} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$

$$
\begin{aligned}
& \max 6 x_{1}+8 x_{2} \\
& 5 x_{1}+10 x_{2} \leq 60 \\
& 4 x_{1}+4 x_{2} \leq 40 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\max & {\left[\begin{array}{ll}
6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } \\
& {\left[\begin{array}{cc}
5 & 10 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{l}
60 \\
40
\end{array}\right] }
\end{aligned}
$$

$$
x_{1}, x_{2} \geq 0
$$

Outline

1. Course Organization
2. Introduction

Resource Allocation
Duality

Duality

Resource Valuation problem: Determine the value of the raw materials on hand such that: The company must be willing to sell the raw materials should an outside firm offer to buy them at a price consistent with the market
$z_{i} \quad$ value of a unit of raw material i
$\sum_{i=1}^{m} b_{i} z_{i} \quad$ opportunity cost (cost of having instead of selling)
ρ_{i} prevailing unit market value of material i
$\sigma_{j} \quad$ prevailing unit product price
Goal is to minimize the lost opportunity cost (ie, the cost for the outside company)

$$
\begin{align*}
& \min \sum_{i=1}^{m} b_{i} z_{i} \tag{1}\\
& \quad z_{i} \geq \rho_{i}, \quad i=1 \ldots m \tag{2}\\
& \quad \sum_{i=1}^{m} z_{i} a_{i j} \geq \sigma_{j}, \quad j=1 \ldots n \tag{3}
\end{align*}
$$

(2) and (3) otherwise contradicting market

Let

$$
y_{i}=z_{i}-\rho_{i}
$$

markup that the company would make by reselling the raw material instead of producing.

$$
\begin{aligned}
& \min \sum_{i=1}^{m} y_{i} b_{i}+\sum_{l} \rho_{i} b_{i} \\
& \sum_{i=1}^{m} y_{i} a_{i j} \geq c_{j}, \quad j=1 \ldots n \\
& \quad y_{i} \geq 0, \quad i=1 \ldots m
\end{aligned}
$$

$$
\begin{aligned}
& \max \sum_{j=1}^{n} c_{j} x_{j} \\
& \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& \quad x_{j} \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

