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Relaxations
Well Solved ProblemsA few Remarks for Assignment 1

• summarize and comment the results/plots
• In PS, report how many assets are to be bought in task 1 and 2
• In PS, meaning of plots
• Try to use single letter for name of variables
• use ≤, not <=
• x [t] is programming language, xt is math language
• f (t) is a function, not an indexed variable/parameter
• define all variables, eg, y ∈ R
• ∀t must be completed by the domain of t, eg, t = 1..3, t ∈ T
• print your reports in double sided papers
• In LaTeX use \begin{array} or \begin{align} to write your models
• Be short!
• Resume your model in a compact way
• Annotate PDF: MacOSX, Win, Linux
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Relaxations
Well Solved ProblemsOptimality and Relaxation

z = max{c(x) : x ∈ X ⊆ Zn}

How can we prove that x∗ is optimal?
z is UB
z is LB
stop when z − z ≤ ε

z

z

z

• Primal bounds (here lower bounds): every feasible solution gives a primal
bound
may be easy or hard to find, heuristics

• Dual bounds (here upper bounds): Relaxations

Optimality gap:

gap =
pb − db

inf{|z |, z ∈ [db, pb]}
(·100) for a minimization problem

(If pb ≥ 0 and db ≥ 0 then pb−db
db . If db = pb = 0 then gap = 0. If no feasible sol

found or db ≤ 0 ≤ pb then gap is not computed.)
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Relaxations
Well Solved Problems

Proposition

(RP) zR = max{f (x) : x ∈ T ⊆ Rn} is a relaxation of
(IP) z = max{c(x) : x ∈ X ⊆ Rn} if :

(i) X ⊆ T or
(ii) f (x) ≥ c(x) ∀x ∈ X

In other terms:

max
x∈T

f (x) ≥
{
maxx∈T c(x)
maxx∈X f (x)

}
≥ max

x∈X
c(x)

• T : candidate solutions;
• X ⊆ T feasible solutions;
• f (x) ≥ c(x)
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Relaxations
Well Solved ProblemsRelaxations

How to construct relaxations?

1. IP : max{cTx : x ∈ P ∩ Zn},P = {c ∈ Rn : Ax ≤ b}
LP : max{cTx : x ∈ P}
Better formulations give better bounds (P1 ⊆ P2)

Proposition

(i) If a relaxation RP is infeasible, the original problem IP is infeasible.
(ii) Let x∗ be optimal solution for RP. If x∗ ∈ X and f (x∗) = c(x∗) then

x∗ is optimal for IP.

2. Combinatorial relaxations to easy problems that can be solved rapidly
Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
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Relaxations
Well Solved Problems

3. Lagrangian relaxation

IP : z = max{cTx : Ax ≤ b, x ∈ X ⊆ Zn}
LR : z(u) = max{cTx + u(b− Ax) : x ∈ X}

z(u) ≥ z ∀u ≥ 0

4. Duality:

Definition
Two problems:

z = max{c(x) : x ∈ X} w = min{w(u) : u ∈ U}

form a weak-dual pair if c(x) ≤ w(u) for all x ∈ X and all u ∈ U.
When z = w they form a strong-dual pair
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Relaxations
Well Solved Problems

Proposition

z = max{cTx : Ax ≤ b, x ∈ Zn
+} and wLP = min{ubT : uA ≥ c,u ∈ Rm

+}
(ie, dual of linear relaxation) form a weak-dual pair.

Proposition

Let IP and D be weak-dual pair:
(i) If D is unbounded, then IP is infeasible
(ii) If x∗ ∈ X and u∗ ∈ U satisfy c(x∗) = w(u∗) then x∗ is optimal for IP

and u∗ is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation
to have a bound, any feasible dual solution gives a bound.
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Relaxations
Well Solved ProblemsExamples

Weak pairs:
Matching: z = max{1Tx : Ax ≤ 1, x ∈ Zm

+}
V. Covering: w = min{1Ty : yTA ≥ 1, y ∈ Zn

+}

Proof: consider LP relaxations, then z ≤ zLP = wLP ≤ w .
(strong when graphs are bipartite)

Weak pairs:
Packing: z = max{1Tx : Ax ≤ 1, x ∈ Zn

+}
S. Covering: w = min{1Ty : ATy ≥ 1, y ∈ Zm

+}
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Relaxations
Well Solved ProblemsSeparation problem

max{cTx : x ∈ X} ≡ max{cTx : x ∈ conv(X )}
X ⊆ Zn, P a polyhedron P ⊆ Rn and X = P ∩ Zn

Definition (Separation problem for a COP)

Given x∗ ∈ P is x∗ ∈ conv(X )? If not find an inequality ax ≤ b satisfied by
all points in X but violated by the point x∗.

(Farkas’ lemma states the existence of such an inequality.)
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Relaxations
Well Solved ProblemsProperties of Easy Problems

Four properties that often go together:

Definition

(i) Efficient optimization property: ∃ a polynomial algorithm for
max{cx : x ∈ X ⊆ Rn}

(ii) Strong duality property: ∃ strong dual D min{w(u) : u ∈ U} that allows
to quickly verify optimality

(iii) Efficient separation problem: ∃ efficient algorithm for separation problem
(iv) Efficient convex hull property: a compact description of the convex hull

is available

Example:
If explicit convex hull strong duality holds

efficient separation property (just description of
conv(X ))
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Well Solved Problems

Theoretical analysis to prove results about
• strength of certain inequalities that are facet defining
2 ways

• descriptions of convex hull of some discrete X ⊆ Z∗
several ways, we see one next

Example

Let

X = {(x , y) ∈ Rm
+ × B1 :

m∑
i=1

xi ≤ my , xi ≤ 1 for i = 1, . . . ,m}

P = {(x , y) ∈ Rn
+ × R1 : xi ≤ y for i = 1, . . . ,m, y ≤ 1}

.
Polyhedron P describes conv(X )
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Relaxations
Well Solved ProblemsTotally Unimodular Matrices

When the LP solution to this problem

IP : max{cT x : Ax ≤ b, x ∈ Zn
+}

with all data integer will have integer solution?
AN AB 0 b

cT
N cT

B 1 0


ABxB + ANxN = b

xN = 0 ABxB = b,
AB m ×m non singular matrix
xB ≥ 0

Cramer’s rule for solving systems of linear equations:

[
a b
c d

] [
x
y

]
=

[
e
f

]
x =

∣∣∣∣e b
f d

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ y =

∣∣∣∣a e
c f

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ x = A−1
B b =

Aadj
B b

det(AB)
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Well Solved Problems

Definition
• A square integer matrix B is called unimodular (UM) if det(B) = ±1
• An integer matrix A is called totally unimodular (TUM) if every square,
nonsingular submatrix of A is UM

Proposition

• If A is TUM then all vertices of R1(A) = {x : Ax = b, x ≥ 0} are integer
if b is integer

• If A is TUM then all vertices of R2(A) = {x : Ax ≤ b, x ≥ 0} are integer
if b is integer.

Proof: if A is TUM then
[
A I
]
is TUM

Any square, nonsingular submatrix C of
[
A I
]
can be written as

C =

[
B 0
D Ik

]
where B is square submatrix of A. Hence det(C ) = det(B) = ±1
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Well Solved Problems

Proposition

The transpose matrix AT of a TUM matrix A is also TUM.

Theorem (Sufficient condition)

An integer matrix A with is TUM if
1. aij ∈ {0,−1,+1} for all i , j
2. each column contains at most two non-zero coefficients (

∑m
i=1 |aij | ≤ 2)

3. if the rows can be partitioned into two sets I1, I2 such that:
• if a column has 2 entries of same sign, their rows are in different sets
• if a column has 2 entries of different signs, their rows are in the
same set

[
1 −1
1 1

] 1 −1 0
0 1 1
1 0 1




1 −1 −1 0
−1 0 0 1
0 1 0 −1
0 0 1 0



0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0
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Proof: by induction
Basis: one matrix of one element {+1,−1} is TUM

Induction: let C be of size k .
If C has column with all 0s then it is singular.
If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

∀j :
∑
i∈I1

aij =
∑
i∈I2

aij

but then linear combination of rows and det(C ) = 0
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Other matrices with integrality property:

• TUM
• Balanced matrices
• Perfect matrices
• Integer vertices

Defined in terms of forbidden substructures that represent fractionating
possibilities.

Proposition

A is always TUM if it comes from
• node-edge incidence matrix of undirected bipartite graphs
(ie, no odd cycles) (I1 = U, I2 = V ,B = (U,V ,E ))

• node-arc incidence matrix of directed graphs (I2 = ∅)

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching
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