DM545 Linear and Integer Programming

Lecture 13 Cutting Planes and Branch and Bound

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Cutting Plane Algorithms

2. Branch and Bound

Outline

1. Cutting Plane Algorithms

2. Branch and Bound

Valid Inequalities

- IP: $z = \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in X\}, X = \{\mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_+^n\}$
- Proposition: $\operatorname{conv}(X) = \{\mathbf{x} : \tilde{A}\mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq 0\}$ is a polyhedron
- LP: $z = \max\{\mathbf{c}^T\mathbf{x} : \tilde{A}\mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq \mathbf{0}\}$ would be the best formulation
- Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

 $\mathbf{a}\mathbf{x} \leq \mathbf{b}$ is a valid inequality for $X \subseteq \mathbb{R}^n$ if $\mathbf{a}\mathbf{x} \leq \mathbf{b} \ \forall \mathbf{x} \in X$

Which are useful inequalities? and how can we find them? How can we use them?

Example: Pre-processing

•
$$X = \{(x, y) : x \le 999y; 0 \le x \le 5, y \in \mathbb{B}^1\}$$

 $x \le 5y$

•
$$X = \{x \in \mathbb{Z}_+^n : 13x_1 + 20x_2 + 11x_3 + 6x_4 \ge 72\}$$

$$2x_1 + 2x_2 + x_3 + x_4 \ge \frac{13}{11}x_1 + \frac{20}{11}x_2 + x_3 + \frac{6}{11}x_4 \ge \frac{72}{11} = 6 + \frac{6}{11}$$
$$2x_1 + 2x_2 + x_3 + x_4 \ge 7$$

Capacitated facility location:

$$\sum_{i \in M} x_{ij} \le b_j y_j \quad \forall j \in N$$

$$\sum_{j \in N} x_{ij} = a_i \quad \forall i \in M$$

$$x_{ij} \le a_i$$

$$x_{ij} \ge 0, y_j \in B^n$$

$$x_{ij} \le \min\{a_i, b_j\} y_j$$

Chvátal-Gomory cuts

- $X \in P \cap \mathbb{Z}^n_+$, $P = \{ \mathbf{x} \in \mathbb{R}^n_+ : A\mathbf{x} \le \mathbf{b} \}$, $A \in \mathbb{R}^{m \times n}$
- $\mathbf{u} \in \mathbb{R}^m_+$, $\{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$ columns of A

CG procedure to construct valid inequalities

1)
$$\sum_{i=1}^{n} \mathbf{u} \mathbf{a}_{j} x_{j} \leq \mathbf{u} \mathbf{b} \qquad \text{valid: } \mathbf{u} \geq \mathbf{0}$$

2)
$$\sum_{j=1} \lfloor \mathbf{u} \mathbf{a}_j \rfloor x_j \leq \mathbf{u} \mathbf{b}$$
 valid: $\mathbf{x} \geq \mathbf{0}$ and $\sum \lfloor \mathbf{u} \mathbf{a}_j \rfloor x_j \leq \sum \mathbf{u} \mathbf{a}_j x_j$

3)
$$\sum_{j=1}^{n} \lfloor \mathbf{ua}_{j} \rfloor x_{j} \leq \lfloor \mathbf{ub} \rfloor$$
 valid for X since $\mathbf{x} \in \mathbb{Z}^{n}$

Theorem

by applying this CG procedure a finite number of times every valid inequality for X can be obtained

Cutting Plane Algorithms

- $X \in P \cap \mathbb{Z}_+^n$
- a family of valid inequalities $\mathcal{F}: \mathbf{a}^T \mathbf{x} \leq b, (\mathbf{a}, b) \in \mathcal{F}$ for X
- we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm

```
Init.: t = 0, P^0 = P

Iter. t: Solve \bar{z}^t = \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in P^t\}

let \mathbf{x}^t be an optimal solution

if \mathbf{x}^t \in \mathbb{Z}^n stop, \mathbf{x}^t is opt to the IP

if \mathbf{x}^t \notin \mathbb{Z}^n solve separation problem for \mathbf{x}^t and \mathcal{F}

if (\mathbf{a}^t, b^t) is found with \mathbf{a}^t\mathbf{x}^t > b^t that cuts off \mathbf{x}^t

P^{t+1} = P \cap \{\mathbf{x} : \mathbf{a}^i\mathbf{x} \leq b^i, i = 1, \dots, t\}

else stop (P^t) is in any case an improved formulation)
```

Cutting plane algorithm + Chvátal-Gomory cuts

- $\max\{\mathbf{c}^T\mathbf{x}: A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^n\}$
- Solve LPR to optimality

$$\begin{bmatrix} I & \overline{A}_{N} = A_{B}^{-1}A_{N} & 0 & \overline{b} \\ \overline{c}_{B} & \overline{c}_{N}(\leq 0) & 1 & -\overline{d} \end{bmatrix} \qquad x_{u} = \overline{b}_{u} - \sum_{j \in N} \overline{a}_{uj}x_{j}, \quad u \in B$$

$$z = \overline{d} + \sum_{j \in N} \overline{c}_{j}x_{j}$$

$$x_{u} = \bar{b}_{u} - \sum_{j \in N} \bar{a}_{uj} x_{j}, \quad u \in B$$
$$z = \bar{d} + \sum_{j \in N} \bar{c}_{j} x_{j}$$

• If basic optimal solution to LPR is not integer then \exists some row u: $\bar{b}_{ii} \notin \mathbb{Z}^1$.

The Chvatál-Gomory cut applied to this row is:

$$x_{B_{\boldsymbol{u}}} + \sum_{j \in N} \lfloor \bar{a}_{uj} \rfloor x_j \leq \lfloor \bar{b}_u \rfloor$$

 $(B_u \text{ is the index in the basis } B \text{ corresponding to the row } u)$ (cntd)

• Eliminating $x_{B_u} = \bar{b}_u - \sum_{j \in N} \bar{a}_{uj} x_j$ in the CG cut we obtain:

$$\sum_{j \in N} (\underline{\bar{a}_{uj} - \lfloor \bar{a}_{uj} \rfloor}) x_j \ge \underline{\bar{b}_{u} - \lfloor \bar{b}_{u} \rfloor}$$

$$\sum_{i\in N} f_{uj} x_j \ge f_u$$

 $f_u > 0$ or else u would not be row of fractional solution. It implies that x^* in which $x_N^* = 0$ is cut out!

 Moreover: when x is integer, since all coefficient in the CG cut are integer the slack variable of the cut is also integer:

$$s = -f_u + \sum_{j \in N} f_{uj} x_j$$

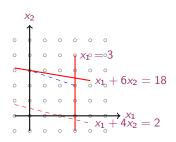
(theoretically it terminates after a finite number of iterations, but in practice not successful.)

Example

$$\max x_1 + 4x_2$$
 $x_1 + 6x_2 \le 18$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$
 x_1, x_2 integer



-	- 1	x1		x2	-	x3		x4		-z		ъ
	-+-		+		+-		+-		+-		+-	
1	-	0	-	1	1	1/6	1	-1/6	1	0	1	15/6
1	-	1	-	0	1	0	1	1	1	0	1	3
1	-+-		+		+-		+-		+-		+-	
1	- 1	0	Ι	0	Ι	-2/3	Τ	-1/3	Τ	1	Ι	-13



$$x_2 = 5/2, x_1 = 3$$

Optimum, not integer

• We take the first row:

• CG cut
$$\sum_{j\in N} f_{uj}x_j \geq f_u \leadsto \frac{1}{6}x_3 + \frac{5}{6}x_4 \geq \frac{1}{2}$$

• Let's see that it leaves out x*: from the CG proof:

$$\frac{1/6 (x_1 + 6x_2 \le 18)}{\frac{5/6 (x_1 \le 3)}{x_1 + x_2 \le 3 + 5/2 = 5.5}}$$

since
$$x_1, x_2$$
 are integer $x_1 + x_2 \le 5$

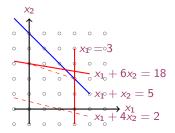
 Let's see how it looks in the space of the original variables: from the first tableau:

$$x_{3} = 18 - 6x_{2} - x_{1}$$

$$x_{4} = 3 - x_{1}$$

$$\frac{1}{6}(18 - 6x_{2} - x_{1}) + \frac{5}{6}(3 - x_{1}) \ge \frac{1}{2} \quad \Rightarrow \quad x_{1} + x_{2} \le 5$$

• Graphically:



• Let's continue:

														Ъ	
														-1/2	
														5/2	
											•			3	
•			•						•				•		•
•															•
- 1	- 1	0	-	0	-	-2/3	-	-1/3	-	0	-	1	1	-13	-

We need to apply dual-simplex (will always be the case, why?)

ratio rule: $\min \left| \frac{c_j}{a_{jj}} \right|$

• After the dual simplex iteration:

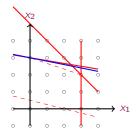
														b	
1	-+-		+.		-+-		-+-		+.		-+-		-+-		- 1
	-	0		0	-	1/5	-	1		-6/5		0		3/5	1
	1	0	1	1	1	1/5	1	0	1	-1/5		0	1	13/5	1
	1	1	1	0	1	-1/5	1	0	1	6/5		0	1	12/5	1
	-+-		+-		+-		+-		+-		-+-		+-		- [
1	1	0	Ī	0	Τ	-3/5	Τ	0	Ī	-2/5	Τ	1	Ī	-64/5	1

We can choose any of the three rows.

Let's take the third: CG cut: $\frac{4}{5}x_3 + \frac{1}{5}x_5 \ge \frac{2}{5}$

• In the space of the original variables:

$$4(18 - x_1 - 6x_2) + (5 - x_1 - x_2) \ge 2$$
$$x_1 + 5x_2 \le 15$$



• ...

Outline

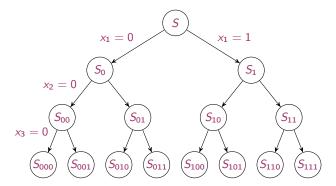
1. Cutting Plane Algorithms

2. Branch and Bound

Branch and Bound

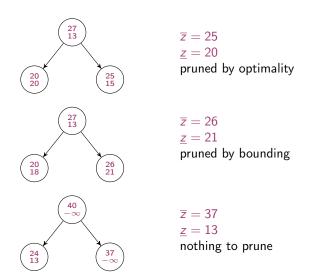
- Consider the problem $z = \max\{c^T x : x \in S\}$
- Divide and conquer: let $S = S_1 \cup ... \cup S_k$ be a decomposition of S into smaller sets, and let $z^k = \max\{c^T x : x \in S_k\}$ for k = 1, ..., K. Then $z = \max_k z^k$

For instance if $S \subseteq \{0,1\}^3$ the enumeration tree is:



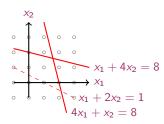
Bounding

- Let \overline{z}^k be an upper bound on z^k
- Let \underline{z}^k be an lower bound on z^k
- $(\underline{z}^k \leq z^k \leq \overline{z}^k)$
- $\overline{z} = \max_k \overline{z}^k$ is an upper bound on z
- $\underline{z} = \max_{k} \underline{z}^{k}$ is a lower bound on z



Example

$$\begin{array}{ll} \max \;\; x_1 \;\; + 2 x_2 \\ x_1 \;\; + 4 x_2 \leq 8 \\ 4 x_1 + \;\; x_2 \leq 8 \\ x_1, x_2 \geq 0, \text{integer} \end{array}$$

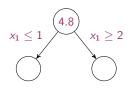


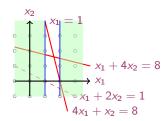
Solve LP

continuing

 				x4			 -	$x_2 = 1 + 3/5 = 1.6$ $x_1 = 8/5$
						24/15		The optimal solution
II'=II-1/4I'							- [will not be more than
								0 + 14/5 4.0

• Both variables are fractional, we pick one of the two:





• Let's consider first the left branch:

				x4				
				0				
	•			-1/15		•		
				4/15				
				3/5				•

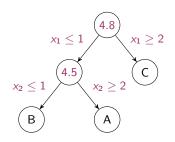
I'=I-III 		0 0 1	 - -	0 1 0	1	1/15 4/15 -1/15	1	-4/15 -1/15 4/15	 - -	1 0 0	1	0 0 0	 	-9/15 24/15 24/15	
i								-3/5							•

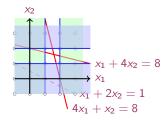
always a b term negative after branching:

$$\begin{aligned}
b_1 &= \lfloor \bar{b}_3 \rfloor \\
\bar{b}_1 &= \lfloor \bar{b}_3 \rfloor - b_3 < 0
\end{aligned}$$

Dual simplex: $\min_{j} \left| \frac{c_{j}}{a_{i} j} \right|$

• Let's branch again





We have three open problems. Which one we choose next? Let's take A.

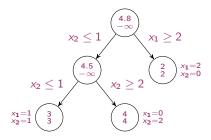
x1 x2 x3 x4 x5 x6 b -z
0 1 15/60 0 -1/4 0 7/4 1 0 0 0 1 0 1
++
x1 x2 x3 x4 x5 x6 b -z
III+I 0 0 1/4 0 -1/4 1 0 -1/4 1 0 9/4 1 0 9/4 1 0 9/4 1 0 1 1 1 1 1 1 1 1
0 1 15/60 0 -1/4 0 7/4 1 0 0 1 0 1
+++

continuing we find:

$$x_1 = 0$$
$$x_2 = 2$$

$$\overline{OPT} = 4$$

The final tree:

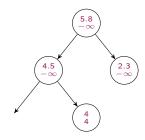


The optimal solution is 4.

Pruning

Pruning:

- 1. by optimality: $z^k = \max\{c^T x : x \in S^k\}$
- 2. by bound $\overline{z}^k \leq \underline{z}$ Example:



3. by infeasibility $S^k = \emptyset$

B&B Components

Bounding:

- 1. LP relaxation
- 2. Lagrangian relaxation
- 3. Combinatorial relaxation
- 4. Duality

Branching:

```
S_1 = S \cap \{x : x_j \le \lfloor \bar{x}_j \rfloor\}
S_2 = S \cap \{x : x_j \ge \lceil \bar{x}_j \rceil\}
```

thus the current optimum is not feasible either in S_1 or in S_2 .

Which variable to choose?

Eg: Most fractional variable $\arg\max_{j\in\mathcal{C}}\min\{f_j,1-f_j\}$

Choosing Node for Examination from the list of active (or open):

- Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just adding a new constraint)
- Best Bound First: (eg. largest upper: Z̄^s = max_k Z̄^k or largest lower to die fast)
- Mixed strategies

Reoptimizing: dual simplex

Updating the Incumbent: when new best feasible solution is found:

$$\underline{z} = \max\{\underline{z}, 4\}$$

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

Enhancements

- Preprocessor: constraint/problem/structure specific tightening bounds redundant constraints variable fixing: eg: $\max\{c^Tx: Ax \leq b, l \leq x \leq u\}$ fix $x_j = l_j$ if $c_j < 0$ and $a_{ij} > 0$ for all i fix $x_j = u_j$ if $c_j > 0$ and $a_{ij} < 0$ for all i
- Priorities: establish the next variable to branch
- Special ordered sets SOS (or generalized upper bound GUB)

$$\sum_{j=1}^{k} x_j = 1 \qquad x_j \in \{0, 1\}$$

instead of:
$$S_0 = S \cap \{x : x_j = 0\}$$
 and $S_1 = S \cap \{x : x_j = 1\}$ $\{x : x_j = 0\}$ leaves $k-1$ possibilities $\{x : x_j = 1\}$ leaves only 1 possibility hence tree unbalanced

here:
$$S_1 = S \cap \{x : x_{j_i} = 0, i = 1..r\}$$
 and $S_2 = S \cap \{x : x_{j_i} = 0, i = r+1,..,k\}, r = \min\{t : \sum_{i=1}^t x_{j_i}^* \ge \frac{1}{2}\}$

- Cutoff value: a user-defined primal bound to pass to the system.
- Simplex strategies: simplex is good for reoptimizing but for large models interior points methods may work best.
- Strong branching: extra work to decide more accurately on which variable to branch:
 - 1. choose a set C of fractional variables
 - 2. reoptimize for each them (in case for limited iterations)
 - 3. $\overline{z}_{j}^{\downarrow}, \overline{z}_{j}^{\uparrow}$ (dual bound of down and up branch)

$$j^* = \arg\min_{j \in \mathcal{C}} \max\{z_j^\downarrow, z_j^\uparrow\}$$

ie, choose variable with largest decrease of dual bound, eg UB for \max

- If not finished after a certain time, possible reasons:
 - no feasible solution is found
 - the gap best feasible-dual bound is large

$$\mathsf{gap} = \frac{|\mathsf{Primal\ bound} - \mathsf{Dual\ bound}|}{\mathsf{Primal\ bound} + \epsilon} \cdot 100$$

- runs out of memory
- heuristics for finding feasible solutions (generally NP-complete problem)
- find better lower bounds if they are weak: addition of cuts, stronger formulation, branch and cut
- Branch and cut: a B&B algorithm with cut generation at all nodes of the tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the node

Relative Optimality Gap

In CPLEX:

$$\mathsf{gap} = \frac{|\mathsf{best} \,\, \mathsf{node} - \mathsf{best} \,\, \mathsf{integer}|}{|\mathsf{best} \,\, \mathsf{integer} + 10^{-11}|}$$

In SCIP and MIPLIB standard:

$$\mathsf{gap} = \frac{pb - db}{\mathsf{inf}\{|z|, z \in [db, pb]\}} \cdot 100 \qquad \mathsf{for a minimization problem}$$

(if $pb \geq 0$ and $db \geq 0$ then $\frac{pb-db}{db}$) if db = pb = 0 then gap = 0 if no feasible sol found or $db \leq 0 \leq pb$ then the gap is not computed.

Last standard avoids problem of non decreasing gap if we go through zero

	3186	2520	-666.6217	4096	956.6330	-667.2010	1313338	169.74%
	3226	2560	-666.6205	4097	956.6330	-667.2010	1323797	169.74%
	3266	2600	-666.6201	4095	956.6330	-667.2010	1335602	169.74%
E	Lapsed	real time	= 2801.61	sec.	(tree size = 77.54)	MB, soluti	ons = 2)	
*	3324+	2656			-125.5775	-667.2010	1363079	431.31%
	3334	2668	-666.5811	4052	-125.5775	-667.2010	1370748	431.31%
	3380	2714	-666.5799	4017	-125.5775	-667.2010	1388391	431.31%
	3422	2756	-666.5791	4011	-125.5775	-667.2010	1403440	431.31%

Advanced Techniques

We did not treat:

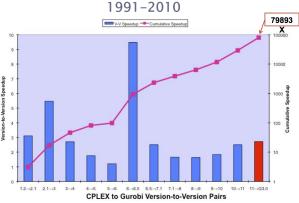
- LP: Dantzig Wolfe decomposition
- LP: Column generation
- LP: Delayed column generation
- IP: Branch and Price
- LP: Benders decompositions
- LP: Lagrangian relaxation

MILP Solvers Breakthroughs

We have seen Fractional Gomory cuts.

The introduction of Mixed Integer Gomory cuts in CPLEX was the major breakthrough of CPLEX 6.5 and produced the version-to-version speed-up given by the blue bars in the chart below

MIP Performance Improvements



(source: R. Bixby. Mixed-Integer Programming: It works better than you may think. 2010. Slides on the net)

Summary

1. Cutting Plane Algorithms

2. Branch and Bound