DM545 Linear and Integer Programming

> Lecture 6 More on Duality

### Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

## Outline

Derivation Sensitivity Analysis

### 1. Derivation

Geometric Interpretation Lagrangian Duality Dual Simplex

2. Sensitivity Analysis

## Summary

- Derivation:
  - 1. bounding
  - 2. multipliers
  - 3. recipe
  - 4. Lagrangian
- Theory:
  - Symmetry
  - Weak duality theorem
  - Strong duality theorem
  - Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation

## Outline

### 1. Derivation

Geometric Interpretation Lagrangian Duality Dual Simplex

2. Sensitivity Analysis

## **Dual Problem**

Dual variables y in one-to-one correspondence with the constraints: Primal problem: Dual Problem:

 $\begin{array}{ll} \max \quad z = \mathbf{c}^{\mathsf{T}} \mathbf{x} & \min \quad w = \mathbf{b}^{\mathsf{T}} \mathbf{y} \\ A \mathbf{x} = \mathbf{b} & A^{\mathsf{T}} \mathbf{y} \geq \mathbf{c} \\ \mathbf{x} \geq \mathbf{0} & \mathbf{y} \in \mathbb{R}^{m} \end{array}$ 

- Basic feasible solutions give immediate lower bounds on the optimal value *z*\*. Is there a simple way to get upper bounds?
- The optimal solution must satisfy any linear combination  $y \in \mathbb{R}^m$  of the equality constraints.
- If we can construct a linear combination of the equality constraints  $\mathbf{y}^{T}(A\mathbf{x}) = \mathbf{y}^{T}\mathbf{b}$ , for  $\mathbf{y} \in \mathbb{R}^{m}$ , such that  $\mathbf{c}^{T}\mathbf{x} \leq \mathbf{y}^{T}(A\mathbf{x})$ , then  $\mathbf{y}^{T}(A\mathbf{x}) = \mathbf{y}^{T}\mathbf{b}$  is an upper bound on  $z^{*}$ .

## Outline

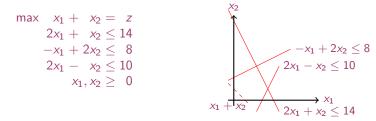
### 1. Derivation

### Geometric Interpretation

Lagrangian Duality Dual Simplex

2. Sensitivity Analysis

## **Geometric Interpretation**



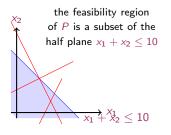
Feasible sol  $x^* = (4, 6)$  yields  $z^* = 10$ . To prove that it is optimal we need to verify that  $y^* = (3/5, 1/5, 0)$  is a feasible solution of D:

$$\begin{array}{l} \min 14y_1 + 8y_2 + 10y_3 = w \\ 2y_1 - y_2 + 2y_3 \ge 1 \\ y_1 + 2y_2 - y_3 \ge 1 \\ y_1, y_2, y_3 \ge 0 \end{array}$$

and that 
$$w^* = 10$$
  

$$\frac{\frac{3}{5} \cdot (2x_1 + x_2 \le 14)}{\frac{1}{5} \cdot (-x_1 + 2x_2 \le 8)}$$

$$\frac{x_1 + x_2 \le 10}{x_1 + x_2 \le 10}$$



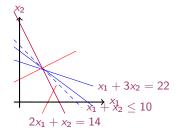
$$(2v - w)x_1 + (v + 2w)x_2 \le 14v + 8w$$

set of halfplanes that contain the feasibility region of P and pass through [4, 6]

 $\begin{array}{l} 2v - w \geq 1 \\ v + 2w \geq 1 \end{array}$ 

Example of boundary lines among those allowed:

$$v = 1, w = 0 \implies 2x_1 + x_2 = 14$$
$$v = 1, w = 1 \implies x_1 + 3x_2 = 22$$
$$v = 2, w = 1 \implies 3x_1 + 4x_2 = 36$$



## Outline

### 1. Derivation

Geometric Interpretation Lagrangian Duality Dual Simplex

2. Sensitivity Analysis

## Lagrangian Duality

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then search strongest bounds.

 $\begin{array}{l} \min 13x_1 + 6x_2 + 4x_3 + 12x_4 \\ 2x_1 + 3x_2 + 4x_3 + 5x_4 = 7 \\ 3x_1 + 2x_3 + 4x_4 = 2 \\ x_1, x_2, x_3, x_4 \ge 0 \end{array}$ 

We wish to reduce to a problem easier to solve, ie:

$$\min c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \\ x_1, x_2, \ldots, x_n \ge 0$$

solvable by inspection: if c < 0 then  $x = +\infty$ , if  $c \ge 0$  then x = 0. measure of violation of the constraints:

$$7 - (2x_1 + 3x_2 + 4x_3 + 5x_4) 2 - (3x_1 + + 2x_3 + 4x_4)$$

We relax these measures in obj. function with Lagrangian multipliers  $y_1$ ,  $y_2$ . We obtain a family of problems:

$$PR(y_1, y_2) = \min_{x_1, x_2, x_3, x_4 \ge 0} \left\{ \begin{array}{ccc} 13x_1 + 6x_2 + 4x_3 + 12x_4 \\ +y_1(7 - 2x_1 + 3x_2 + 4x_3 + 5x_4) \\ +y_2(2 - 3x_1 + 2x_3 + 4x_4) \end{array} \right\}$$

- 1. for all  $y_1, y_2 \in \mathbb{R} : \operatorname{opt}(PR(y_1, y_2)) \le \operatorname{opt}(P)$
- 2.  $\max_{y_1,y_2 \in \mathbb{R}} \{ \operatorname{opt}(PR(y_1, y_2)) \} \le \operatorname{opt}(P)$

PR is easy to solve.

(It can be also seen as a proof of the weak duality theorem)

$$PR(y_1, y_2) = \min_{\substack{x_1, x_2, x_3, x_4 \ge 0}} \begin{cases} (13 - 2y_2 - 3y_2) x_1 \\ + (6 - 3y_1) x_2 \\ + (4 - 2y_2) x_3 \\ + (12 - 5y_1 - 4y_2) x_4 \\ + 7y_1 + 2y_2 \end{cases}$$

if coeff. of x is < 0 then bound is  $-\infty$  then LB is useless

$$\begin{array}{l} (13 - 2y_2 - 3y_2) \geq 0\\ (6 - 3y_1) \geq 0\\ (4 - 2y_2) \geq 0\\ (12 - 5y_1 - 4y_2) \geq 0 \end{array}$$

If they all hold then we are left with  $7y_1 + 2y_2$  because all go to 0.

## **General Formulation**

$$\begin{array}{ll} \min & z = c^T x & c \in \mathbb{R}^n \\ & Ax = b & A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m \\ & x \ge 0 & x \in \mathbb{R}^n \end{array}$$

$$\max_{y \in \mathbb{R}^m} \{ \min_{x \in \mathbb{R}^n_+} \{ cx + y(b - Ax) \} \}$$
$$\max_{y \in \mathbb{R}^m} \{ \min_{x \in \mathbb{R}^n_+} \{ (c - yA)x + yb \} \}$$

$$\max \begin{array}{c} b^{\mathsf{T}} y \\ A^{\mathsf{T}} y \\ y \in \mathbb{R}^{m} \end{array} \leq c$$

## Outline

### 1. Derivation

Geometric Interpretation Lagrangian Duality Dual Simplex

2. Sensitivity Analysis

## **Dual Simplex**

• Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableau:

$$\max\{c^{T}x \mid Ax \le b, x \ge 0\} = \min\{b^{T}y \mid A^{T}y \ge c^{T}, y \ge 0\}$$
  
=  $-\max\{-b^{T}y \mid -A^{T}x \le -c^{T}, y \ge 0\}$ 

• We obtain a new algorithm for the primal problem: the dual simplex It corresponds to the primal simplex applied to the dual

Primal simplex on primal problem:

- 1. pivot > 0
- 2. col  $c_j$  with wrong sign
- 3. row:  $\min \left\{ \frac{b_i}{a_{ij}} : a_{ij} > 0, i = 1, ..., m \right\}$

Dual simplex on primal problem:

- 1. pivot < 0
- 2. row  $b_i < 0$  (condition of feasibility)

3. col:  $\min\left\{ \left| \frac{c_j}{a_{ij}} \right| : a_{ij} < 0, j = 1, 2, ..., n + m \right\}$ (least worsening solution)

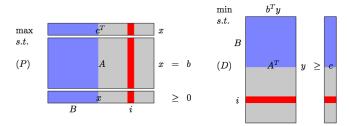
## **Dual Simplex**

• The dual simplex can work better than the primal in some cases. Eg. since running time in practice between 2m and 3m, then if m = 99 and n = 9 then better the dual

## Dual Simplex for Phase I

An alternative view:

- we saw that as the simplex method solves the primal problem, it also implicitly solves the dual problem.
- hence we can solve the primal with the primal and observe what happens in the dual problem



• Primal works with feasible solutions towards optimality

• Dual works with optimal solutions towards feasibility Hence: used for infeasible start:

Dual based Phase I algorithm (Dual-primal algorithm) (see Sheet 3)

# Dual Simplex for Phase I

#### Derivation Sensitivity Analysis

### Primal:

Dual:

m

$$\begin{array}{rll} & 4y_1 - 8y_2 - 7y_3 \\ & -2y_1 - 2y_2 - y_3 \geq -1 \\ & -y_1 + 4y_2 + 3y_3 \geq -1 \\ & y_1, y_2, y_3 \geq 0 \end{array}$$

Initial tableau

| x1 | x2 | w1 | w2 | w3 | -z | Ъl 0 1 0 1 4 0 0 1 0 | -8 3 0 0 1 1 | 0 | -1 | -1 | 0 | 0 | 0 | 0 1 1

infeasible start

• x1 enters, w2 leaves

• Initial tableau (min  $by \equiv -max - by$ )



feasible start (thanks to  $-x_1 - x_2$ )

•  $y_2$  enters,  $z_1$  leaves

### • $x_1$ enters, $w_2$ leaves

| 1 |     | x1 | Т   | x2 | T  | w1 | L  | w2   | L  | wЗ | L  | -z | T  | ъI |
|---|-----|----|-----|----|----|----|----|------|----|----|----|----|----|----|
|   | -+- |    | -+- |    | +- |    | +- |      | +- |    | +- |    | +- |    |
| 1 |     | 0  | Т   | -5 | I. | 1  | T  | -1   | I. | 0  | L  | 0  | Т  | 12 |
| 1 |     | 1  | Т   | -2 | I. | 0  | T  | -0.5 | I. | 0  | L  | 0  | Т  | 4  |
| 1 |     | 0  | Т   | 1  | I. | 0  | T  | -0.5 | I. | 1  | L  | 0  | Т  | -3 |
|   | -+- |    | -+- |    | +- |    | +- |      | +- |    | +- |    | +- |    |
| 1 |     | 0  | Т   | -3 | I. | 0  | T  | -0.5 | I. | 0  | L  | 1  | Т  | 4  |

•  $w_2$  enters,  $w_3$  leaves (note that we •  $y_3$  enters,  $y_2$  leaves kept  $c_i < 0$ , ie, optimality)

| 1     | 1   | x1 | I. | x2 | I. | w1 | T  | w2 | I. | w3 | I. | -z | L | b  | L   |
|-------|-----|----|----|----|----|----|----|----|----|----|----|----|---|----|-----|
|       | -+- |    | +  |    | +- |    | +- |    | +  |    | +- |    | + |    | ٠L. |
| 1     | 1   | 0  | Т  | -7 | I. | 1  | Т  | 0  | Т  | -2 | I. | 0  | Т | 18 | L   |
| 1     | T   | 1  | I. | -3 | I. | 0  | Т  | 0  | I. | -1 | I. | 0  | I | 7  | L   |
| 1     | I.  | 0  | I. | -2 | T  | 0  | T  | 1  | I. | -2 | T  | 0  | L | 6  | L   |
| +++++ |     |    |    |    |    |    |    |    |    |    |    |    |   |    |     |
| 1     | 1   | 0  | Т  | -4 | I. | 0  | Т  | 0  | Т  | -1 | I. | 1  | Т | 7  | L   |

•  $y_2$  enters,  $z_1$  leaves

| I.      | 1 | y1 | I. | y2 | I. | yЗ  | Т | z1  | I. | z2 | I. | -p | I | ъI  |
|---------|---|----|----|----|----|-----|---|-----|----|----|----|----|---|-----|
| ++++++  |   |    |    |    |    |     |   |     |    |    |    |    |   |     |
| 1       | 1 | 1  | Т  | 1  | Т  | 0.5 | Т | 0.5 | I. | 0  | Т  | 0  | Т | 0.5 |
| 1       | 1 | 5  | Т  | 0  | Т  | -1  | Т | 2   | I. | 1  | I. | 0  | Т | 3   |
| +++++++ |   |    |    |    |    |     |   |     |    |    |    |    |   |     |
| 1       | 1 | -4 | I  | 0  | I  | 3   | I | -12 | L  | 0  | I  | 1  | I | -4  |

| 1      |     | y1  | T  | y2 | T  | yЗ | L | z1 | I. | z2 | T  | -p | L  | b  | I. |
|--------|-----|-----|----|----|----|----|---|----|----|----|----|----|----|----|----|
|        | -+- |     | +- |    | +- |    | + |    | +  |    | +- |    | +- |    | ٠L |
| 1      | 1   | 2   | T  | 2  | T  | 1  | L | 1  | Т  | 0  | T  | 0  | I  | 1  | Т  |
| 1      | 1   | 7   | T  | 2  | T  | 0  | L | 3  | Т  | 1  | T  | 0  | I  | 3  | Т  |
| ++++++ |     |     |    |    |    |    |   |    |    |    |    |    |    |    |    |
| 1      | 1   | -18 | I  | -6 | I  | 0  | I | -7 | I  | 0  | I  | 1  | T  | -7 | I  |

## Summary

- Derivation:
  - 1. bounding
  - 2. multipliers
  - 3. recipe
  - 4. Lagrangian
- Theory:
  - Symmetry
  - Weak duality theorem
  - Strong duality theorem
  - Complementary slackness theorem
- Dual Simplex
- Sensitivity Analysis, Economic interpretation

## Outline

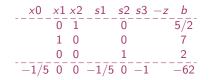
### 1. Derivation

Geometric Interpretation Lagrangian Duality Dual Simplex

### 2. Sensitivity Analysis

## **Economic Interpretation**

final tableau:



- Which are the values of variables, the reduced costs, the shadow prices (or marginal price), the values of dual variables?
- If one slack variable > 0 then overcapacity:s<sub>2</sub> = 2 then the second constraint is not tight
- How many products can be produced at most? at most *m*
- How much more expensive a product not selected should be? look at reduced costs: c<sub>i</sub> - πa<sub>i</sub> > 0
- What is the value of extra capacity of manpower? In 1+1 out 1/5+1

Game: Suppose two economic operators:

- P owns the factory and produces goods
- D is the market buying and selling raw material and resources
- D asks P to close and sell him all resources
- P considers if the offer is convenient
- D wants to spend least possible
- y are prices that D offers for the resources
- $\sum y_i b_i$  is the amount D has to pay to have all resources of P
- $\sum y_i a_{ij} \ge c_j$  total value to make j > price per unit of product
- P either sells all resources  $\sum y_i a_{ij}$  or produces product  $j(c_j)$
- without  $\geq$  there would not be negotiation because P would be better off producing and selling
- at optimality the situation is indifferent (strong th.)
- resource 2 that was not totally utilized in the primal has been given value 0 in the dual. (complementary slackness th.) Plausible, since we do not use all the resource, likely to place not so much value on it.
- for product 0 ∑ y<sub>i</sub>a<sub>ij</sub> > c<sub>j</sub> hence not profitable producing it. (complementary slackness th.)

### Sensitivity Analysis aka Postoptimality Analysis

Instead of solving each modified problems from scratch, exploit results obtained from solving the original problem.

$$\max\{c^T x \mid Ax = b, l \le x \le u\}$$
(\*)

- (I) changes to coefficients of objective function:  $\max\{\tilde{c}^T x \mid Ax = b, l \le x \le u\}$ (primal)  $x^*$  of (\*) remains feasible hence we can restart the simplex from  $x^*$
- (II) changes to RHS terms: max{c<sup>T</sup>x | Ax = b, l ≤ x ≤ u} (dual) x\* optimal feasible solution of (\*) basic sol x̄ of (II): x̄<sub>N</sub> = x<sup>\*</sup><sub>N</sub>, A<sub>B</sub>x̄<sub>B</sub> = b̃ A<sub>N</sub>x̄<sub>N</sub> x̄ is dual feasible and we can start the dual simplex from there. If b̃ differs from b only slightly it may be we are already optimal.

(primal)

### (III) introduce a new variable:

$$\begin{array}{ll} \max & \sum_{j=1}^{6} c_j x_j \\ & \sum_{j=1}^{6} a_{ij} x_j = b_i, \ i = 1, \dots, 3 \\ & l_j \leq x_j \leq u_j, \ j = 1, \dots, 6 \\ & [x_1^*, \dots, x_6^*] \text{ feasible} \end{array}$$

$$\begin{array}{ll} \max & \sum_{j=1}^{7} c_{j} x_{j} \\ & \sum_{j=1}^{7} a_{ij} x_{j} = b_{i}, \ i = 1, \dots, 3 \\ & l_{j} \leq x_{j} \leq u_{j}, \ j = 1, \dots, 7 \\ & [x_{1}^{*}, \dots, x_{6}^{*}, 0] \ \text{feasible} \end{array}$$

(IV) introduce a new constraint:

$$\sum_{j=1}^{6} a_{4j} x_j = b_4$$
$$\sum_{j=1}^{6} a_{5j} x_j = b_5$$
$$l_j \le x_j \le u_j \qquad j = 7,8$$

## (dual)

 $[x_{1}^{*}, \dots, x_{6}^{*}] \text{ optimal}$  $[x_{1}^{*}, \dots, x_{6}^{*}, x_{7}^{*}, x_{8}^{*}] \text{ feasible}$  $x_{7}^{*} = b_{4} - \sum_{j=1}^{6} a_{4j} x_{j}^{*}$  $x_{8}^{*} = b_{5} - \sum_{j=1}^{6} a_{5j} x_{j}^{*}$ 

## Examples

### (I) Variation of reduced costs:

 $\begin{array}{rrrr} \max 6x_1 + \ 8x_2 \\ 5x_1 + 10x_2 \leq 60 \\ 4x_1 + \ 4x_2 \leq 40 \\ x_1, x_2 \geq \ 0 \end{array}$ 

The last tableau gives the possibility to estimate the effect of variations

For a variable in basis the perturbation goes unchanged in the red. costs. Eg:

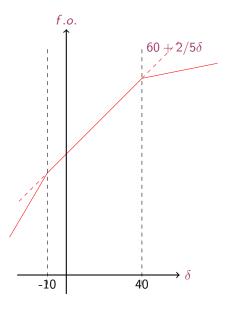
$$\max(6+\delta)x_1+8x_2 \implies \bar{c}_1=-\frac{2}{5}\cdot 5-1\cdot 4+1(6+\delta)=\delta$$

then need to bring in canonical form and hence  $\delta$  changes the obj value. For a variable not in basis, if it changes the sign of the reduced cost  $\implies$  worth bringing in basis  $\implies$  the  $\delta$  term propagates to other columns

### (II) Changes in RHS terms

(It would be more convenient to augment the second. But let's take  $\epsilon = 0$ .) If  $60 + \delta \Longrightarrow$ all RHS terms change and we must check feasibility Which are the multipliers for the first row? $k_1 = \frac{1}{5}, k_2 = -\frac{1}{4}, k_3 = 0$ I:  $1/5(60 + \delta) - 1/4 \cdot 40 + 0 \cdot 0 = 12 + \delta/5 - 10 = 2 + \delta/5$ II:  $-1/5(60 + \delta) + 1/2 \cdot 40 + 0 \cdot 0 = -60/5 + 20 - \delta/5 = 8 - 1/5\delta$ Risk that RHS becomes negative Eg: if  $\delta = -20 \Longrightarrow$ tableau stays optimal but not feasible  $\Longrightarrow$ apply dual simplex

## **Graphical Representation**



### (III) Add a variable

$$\begin{array}{rrrr} \max 5x_0 + 6x_1 + & 8x_2 \\ 6x_0 + 5x_1 + & 10x_2 \leq 60 \\ 8x_0 + & 4x_1 + & 4x_2 \leq 40 \\ & & x_0, x_1, x_2 \geq 0 \end{array}$$

Reduced cost of  $x_0$ ?  $c_j + \sum \pi_i a_{ij} = +1 \cdot 5 - \frac{2}{5} \cdot 6 + (-1)8 = -\frac{27}{5}$ 

To make worth entering in basis:

- increase its cost
- decrease the amount in constraint II:  $-2/5 \cdot 6 a_{20} + 5 > 0$

### (IV) Add a constraint

 $\begin{array}{rrrr} \max 6x_1 + 8x_2 \\ 5x_1 + 10x_2 \leq 60 \\ 4x_1 + 4x_2 \leq 40 \\ 5x_1 + 6x_2 \leq 50 \\ x_1, x_2 \geq 0 \end{array}$ 

Final tableau not in canonical form, need to iterate

### (V) change in a technological coefficient:



- first effect on its column
- then look at c
- finally look at **b**

The dominant application of LP is mixed integer linear programming. In this context it is extremely important being able to begin with a model instantiated in one form followed by a sequence of problem modifications (such as row and column additions and deletions and variable fixings) interspersed with resolves