DM545 Linear and Integer Programming

Lecture 7 Revised Simplex Method

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Revised Simplex Method Efficiency Issues

1. Revised Simplex Method

2. Efficiency Issues

Motivation

Complexity of single pivot operation in standard simplex:

- entering variable O(n)
- leaving variable O(m)
- updating the tableau O(mn)

Problems with this:

- Time: we are doing operations that are not actually needed Space: we need to store the whole tableau: O(mn) floating point numbers
- Most problems have sparse matrices (many zeros) sparse matrices are typically handled efficiently the standard simplex has the "Fill in"effect: sparse matrices are lost
- accumulation of Floating Point Errors over the iterations

Outline

1. Revised Simplex Method

2. Efficiency Issues

Revised Simplex Method

Several ways to improve wrt pitfalls in the previous slide, requires matrix description of the simplex.

$$\max \sum_{\substack{j=1 \\ j=1}^{n}}^{n} c_j x_j \qquad \max \mathbf{c}^T \mathbf{x} \qquad \max\{\mathbf{c}^T \mathbf{x} \mid A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\} \\ \sum_{\substack{j=1 \\ x_j \ge 0}}^{n} a_{ij} x_j \le b_i \ i = 1..m \qquad \mathbf{x} \ge \mathbf{0} \\ A \in \mathbb{R}^{m \times (n+m)} \\ x_j \ge 0 \ j = 1..n \qquad \mathbf{c} \in \mathbb{R}^{(n+m)}, \mathbf{b} \in \mathbb{R}^m, \mathbf{x} \in \mathbb{R}^{n+m}$$

At each iteration the simplex moves from a basic feasible solution to another.

For each basic feasible solution:

- $B = \{1 \dots m\}$ basis
- $N = \{m+1 \dots m+n\}$
- $A_B = [\mathbf{a}_1 \dots \mathbf{a}_m]$ basis matrix
- $A_N = [\mathbf{a}_{m+1} \dots \mathbf{a}_{m+n}]$

- $\mathbf{x}_N = 0$
- $\mathbf{x}_B \geq 0$

$$A\mathbf{x} = A_N \mathbf{x}_N + A_B \mathbf{x}_B = \mathbf{b}$$
$$A_B \mathbf{x}_B = \mathbf{b} - A_N \mathbf{x}_N$$

Theorem

Basic feasible solution $\iff A_B$ is non-singular

 $\mathbf{x}_B = A_B^{-1}\mathbf{b} - A_B^{-1}A_N\mathbf{x}_N$

for the objective function:

 $z = \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N$

Substituting for x_B from above:

$$z = \mathbf{c}_B^T (A_B^{-1} \mathbf{b} - A_B^{-1} A_N \mathbf{x}_N) + \mathbf{c}_N^T \mathbf{x}_N =$$

= $\mathbf{c}_B^T A_B^{-1} \mathbf{b} + (\mathbf{c}_N^T - \mathbf{c}_B^T A_B^{-1} A_N) \mathbf{x}_N$

Collecting together:

$$\mathbf{x}_{B} = A_{B}^{-1}\mathbf{b} - A_{B}^{-1}A_{N}\mathbf{x}_{N}$$
$$z = \mathbf{c}_{B}^{T}A_{B}^{-1}\mathbf{b} + (\mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T}\underbrace{A_{B}^{-1}A_{N}}_{\overline{A}})\mathbf{x}_{N}$$

In tableau form, for a basic feasible solution corresponding to B we have:

$$\begin{bmatrix} A_B^{-1}A_N & I & \mathbf{0} & A_B^{-1}\mathbf{b} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{c}_N^T - \mathbf{c}_B^T A_B^{-1}A_N & \mathbf{0} & 1 & -\mathbf{c}_B^T A_B^{-1}\mathbf{b} \end{bmatrix}$$
 We do not need to compute all elements of \overline{A}

Example

$$\begin{array}{ccc} \max & x_1 + x_2 \\ & -x_1 + x_2 \leq 1 \\ & x_1 & \leq 3 \\ & x_2 \leq 2 \\ & x_1, x_2 \geq 0 \end{array}$$

$$\begin{array}{rl} \max & x_1 + x_2 \\ -x_1 + x_2 + x_3 & = 1 \\ x_1 & + x_4 & = 3 \\ x_2 & + x_5 = 2 \\ x_1, x_2, x_3, x_4, x_5 \geq 0 \end{array}$$

Initial tableau

x1	x2	<i>x</i> 3	<i>x</i> 4	x5	-z	b
[-1]	1	1	0	0	0	1
1	0	0	1	0	0	3
0	1	0	0	1	0	2
1	1	0	0	0	1	0

After two iterations

x1	x2	x3	<i>x</i> 4	<i>x</i> 5	-z	b
$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$	0	-1	0	1	0	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
0	1	0	0	1	0	2
0	0	1	1	-1	0	2
0	0	1	0	-2	1	3

Basic variables x_1, x_2, x_4 . Non basic: x_3, x_5 . From the initial tableau:

$$A_{B} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad A_{N} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \quad x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{4} \end{bmatrix} \quad x_{N} = \begin{bmatrix} x_{3} \\ x_{5} \end{bmatrix}$$
$$c_{B}^{T} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \quad c_{N}^{T} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

• Entering variable:

in std. we look at tableau, in revised we need to compute:

$$\mathbf{c}_N^T - \mathbf{c}_B^T A_B^{-1} A_N$$

1. find $\mathbf{y}^T = \mathbf{c}_B^T A_B^{-1}$ (by solving $\mathbf{y}^T A_B = \mathbf{c}_B^T$, the latter can be done more efficiently)

2. calculate
$$\mathbf{c}_N^T - \mathbf{y}^T A_N$$

Step 1:

$$\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \qquad \mathbf{y}^T A_B = \mathbf{c}_B^T$$
$$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \qquad \mathbf{c}_B^T A_B^{-1} = \mathbf{y}^T$$

Step 2:

$$\begin{bmatrix} 0 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \end{bmatrix} \qquad \qquad \mathbf{c}_N^T - \mathbf{y}^T A_N$$

(Note that they can be computed individually: $\mathbf{c}_j - \mathbf{y}^T \mathbf{a}_j > 0$) Let's take the first we encounter x_3

• Leaving variable

we increase variable by largest feasible amount θ

R1: $x_1 - x_3 + x_5 = 1$ $x_1 = 1 + x_3 \ge 0$ R2: $x_2 + 0x_3 + x_5 = 2$ $x_2 = 2 \ge 0$ R3: $-x_3 + x_4 - x_5 = 2$ $x_4 = 2 - x_3 \ge 0$

$$\mathbf{x}_B = \mathbf{x}_B^* - A_B^{-1} A_N \mathbf{x}_N$$
$$\mathbf{x}_B = \mathbf{x}_B^* - \mathbf{d}\theta$$

d is the column of $A_B^{-1}A_N$ that corresponds to the entering variable, ie, $\mathbf{d} = A_B^{-1}\mathbf{a}$ where **a** is the entering column

3. Find θ such that \mathbf{x}_B stays positive: Find $\mathbf{d} = A_B^{-1}\mathbf{a}$ (by solving $A_B\mathbf{d} = \mathbf{a}$)

Step 3:

$$\begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \implies \mathbf{d} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \implies \mathbf{x}_B = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \theta \ge 0$$

 $2 - \theta \ge 0 \implies \theta \le 2 \rightsquigarrow x_4$ leaves

• So far we have done computations, but now we save the pivoting update. The update of A_B is done by replacing the leaving column by the entering column

$$x_{B}^{*} = \begin{bmatrix} x_{1} - d_{1}\theta \\ x_{2} - d_{2}\theta \\ \theta \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \qquad A_{B} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- Many implementations depending on how $\mathbf{y}^T A_B = \mathbf{c}_B^T$ and $A_B \mathbf{d} = \mathbf{a}$ are solved. They are in fact solved from scratch.
- many operations saved especially if many variables!
- special ways to call the matrix A from memory
- better control over numerical issues since A_B^{-1} can be recomputed.

Outline

1. Revised Simplex Method

2. Efficiency Issues

Solving the two Systems of Equations

 $A_B \mathbf{x} = \mathbf{b}$ solved without computing A_B^{-1} (costly and likely to introduce numerical inaccuracy)

Recall how the inverse is computed:

For a 2×2 matrix the matrix inverse is

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

 $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

$$\mathbf{A}^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^{\mathsf{T}} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

For a 3×3 matrix

the matrix inverse is

$$A^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \\ + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} - \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \end{bmatrix}$$

Eta Factorization of the Basis

Let $A_B = B$, kth iteration B_k be the matrix with col p differing from B_{k-1} Column p is the a column appearing in B_{k-1} d = a solved at 3) Hence:

 $B_k = B_{k-1}E_k$

 E_k is the eta matrix differing from id. matrix in only one column

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ & 1 \end{bmatrix}$$

No matter how we solve $\mathbf{y}^T B_{k-1} = \mathbf{c}_B^T$ and $B_{k-1}\mathbf{d} = \mathbf{a}$, their update always relays on $B_k = B_{k-1}E_k$ with E_k available. Plus when initial basis by slack variable $B_0 = I$ and $B_1 = E_1, B_2 = E_1E_2\cdots$:

 $B_k = E_1 E_2 \dots E_k \quad \text{eta factorization}$ $((((\mathbf{y}^T E_1) E_2) E_3) \dots) E_k = \mathbf{c}_B^T, \quad \mathbf{u}^T E_4 = \mathbf{c}_B^T, \quad \mathbf{v}^T E_3 = \mathbf{u}^T, \quad \mathbf{w}^T E_2 = \mathbf{v}^T, \quad \mathbf{y}^T E_1 = \mathbf{w}^T$ $(E_1(E_2 \dots E_k \mathbf{d})) = \mathbf{a}, \quad E_1 \mathbf{u} = \mathbf{a}, \quad E_2 \mathbf{v} = \mathbf{u}, \quad E_3 \mathbf{w} = \mathbf{v}, \quad E_4 \mathbf{d} = \mathbf{w}$

LU factorization

Worth to consider also the case of $B_0 \neq I$:

 $B_k = B_0 E_1 E_2 \dots E_k$ eta factorization

$$((((\mathbf{y}^{\mathsf{T}} \mathbf{B}_{\mathbf{0}}) \mathbf{E}_{1}) \mathbf{E}_{2}) \cdots) \mathbf{E}_{k} = \mathbf{c}_{B}^{\mathsf{T}}$$
$$(\mathbf{B}_{\mathbf{0}}(\mathbf{E}_{1} \cdots \mathbf{E}_{k} \mathbf{d})) = \mathbf{a}$$

We need an LU factorization of B_0

LU Factorization

To solve the system $A\mathbf{x} = \mathbf{b}$ by Gaussian Elimination we put the A matrix in row echelon form by means of elemntary row operations. Each row operation corresponds to multiply left and right side by a lower triangular matrix L and a permuation matrix P. Hence, the method:

$$A\mathbf{x} = \mathbf{b}$$

$$L_1 P_1 A\mathbf{x} = L_1 P_1 \mathbf{b}$$

$$L_2 P_2 L_1 P_1 A\mathbf{x} = L_2 P_2 L_1 P_1 \mathbf{b}$$

$$\vdots$$

$$L_m P_m \dots L_2 P_2 L_1 P_1 A\mathbf{x} = L_m P_m \dots L_2 P_2 L_1 P_1 \mathbf{b}$$

thus

 $U = L_m P_m \dots L_2 P_2 L_1 P_1 A$ triangular factorization of A

where U is an upper triangular matrix whose entries in the diagonal are ones. (if A is nonsingular such triangularization is unique)

[see numerical example in Va sc 8.1]

We can compute the triangular factorization of B_0 before the initial iterations of the simplex:

 $L_m P_m \dots L_2 P_2 L_1 P_1 B_0 = U$

We can then rewrite U as

 $U = U_m U_{m-1} \ldots, U_1$

Hence, for $B_k = B_0 E_1 E_2 \dots E_k$:

 $L_m P_m \dots L_2 P_2 L_1 P_1 B_k = U_m U_{m-1} \dots U_1 E_1 E_2 \cdots E_k$

Then $\mathbf{y}^T B_k = \mathbf{c}_B^T$ can be solved by first solving:

 $((((\mathbf{y}^T U_m) U_{m-1}) \cdots) E_k = \mathbf{c}_B^T$

and then replacing

 \mathbf{y}^T by $((\mathbf{y}^T L_m P_m) \cdots) L_1 P_1$

 $B_{k} = \underbrace{\left(L_{m}P_{m}\cdots L_{1}P_{1}\right)^{-1}}_{L}\underbrace{U_{m}\cdots E_{k}}_{U}$ $\mathbf{y}L^{-1}U = \mathbf{c}$ $\mathbf{w}U = \mathbf{c}$

 $\mathbf{w} = \mathbf{y} L^{-1} \implies \mathbf{y} = L \mathbf{w}$

- Solving $\mathbf{y}^T B_k = \mathbf{c}_B^T$ also called backward transformation (BTRAN)
- Solving $B_k \mathbf{d} = \mathbf{a}$ also called forward transformation (FTRAN)

- E_i matrices can be stored by only storing the column and the position
- If sparse columns then can be stored in compact mode, ie only nonzero values and their indices
- Same for the triangular eta matrices L_j , U_j
- while for P_j just two indices are needed

More on LP

- Tableau method is unstable: computational errors may accumulate. Revised method has a natural control mechanism: we can recompute A_B^{-1} at any time
- Commercial and freeware solvers differ from the way the systems $\mathbf{y}^{T} = \mathbf{c}_{B}^{T} A_{B}^{-1}$ and $A_{B} \mathbf{d} = \mathbf{a}$ are resolved

Efficient Implementations

- Dual simplex with steepest descent
- Linear Algebra:
 - Dynamic LU-factorization using Markowitz threshold pivoting (Suhl and Suhl, 1990)
 - sparse linear systems: Typically these systems take as input a vector with a very small number of nonzero entries and output a vector with only a few additional nonzeros.
- Presolve, ie problem reductions: removal of redundant constraints, fixed variables, and other extraneous model elements.
- dealing with degeneracy, stalling (long sequences of degenerate pivots), and cycling:
 - bound-shifting (Paula Harris, 1974)
 - Hybrid Pricing (variable selection): start with partial pricing, then switch to devex (approximate steepest-edge, Harris, 1974)
- A model that might have taken a year to solve 10 years ago can now solve in less than 30 seconds (Bixby, 2002).