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More on Vertices
Farkas LemmaLP: Rational Solutions

• A precise analysis of running time for an algorithm includes the number
of bit operations together with the number of arithmetic operations.

Example

The knapsack problem aka, budget allocation problem, that asks to choose
amont a set of n investments those that maximize the profit and cost in total
less than B, can be solved by dynamic programming in

O(n|B|)

The number B needs b = log |B| bits hence the running time is exponential
in the number of bits needed to represent B, ie, O(n2b)

• Weakly polynomial time algorithms have running time that are
independent on the sizes of the numbers involved in the problem and
hence on the number of bits needed to represent them.

• Strongly polynomial time algorithms: the running time of the algorithm
is independent on the number of bit operations. Eg: same running time
for input numbers with 10 bits as for inputs with a million bits.
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• Running time depends on the sizes of numbers. We have to restrict
attention to rational instances when analyzing the running time of
algorithms and assume they are coded in binary.

Theorem
Optimal feasible solutions to LP problems are always rational as long as all
coefficient and constants are rational.

Proof: derives from the fact that in the simplex we only perform
multiplications, divisions and sums of rational numbers

• In spite of this: No strongly polynomial-time algorithm for LP is known.

4



More on Vertices
Farkas Lemma

• Running time depends on the sizes of numbers. We have to restrict
attention to rational instances when analyzing the running time of
algorithms and assume they are coded in binary.

Theorem
Optimal feasible solutions to LP problems are always rational as long as all
coefficient and constants are rational.

Proof: derives from the fact that in the simplex we only perform
multiplications, divisions and sums of rational numbers

• In spite of this: No strongly polynomial-time algorithm for LP is known.

4



More on Vertices
Farkas Lemma

• Running time depends on the sizes of numbers. We have to restrict
attention to rational instances when analyzing the running time of
algorithms and assume they are coded in binary.

Theorem
Optimal feasible solutions to LP problems are always rational as long as all
coefficient and constants are rational.

Proof: derives from the fact that in the simplex we only perform
multiplications, divisions and sums of rational numbers

• In spite of this: No strongly polynomial-time algorithm for LP is known.

4



More on Vertices
Farkas LemmaInterior Point Algorithms

• Ellipsoid method: cannot compete in practice but weakly polynomial
time (Khachyian, 1979)

• Interior point algorithm(s) (Karmarkar, 1984) competitive with simplex
and polynomial in some versions

• affine scaling algorithm (Dikin)

• logarithmic barrier algorithm (Fiacco and McCormick) ≡ Karmakar’s
projective method

1. Start at an interior point of the feasible region

2. Move in a direction that improves the objective function value at the
fastest possible rate while ensuring that the boundary is not reached

3. Transform the feasible region to place the current point at the
center of it
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• because of patents reasons, now mostly known as barrier algorithms

• one single iteration is computationally more intensive than the simplex
(matrix calculations, sizes depend on number of variables)

• particularly competitive in presence of many constraints (eg, for
m = 10, 000 may need less than 100 iterations)

• bad for post-optimality analysis  crossover algorithm to convert a sol
of barrier method into a basic feasible solution for the simplex
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Farkas LemmaHow Large Problems Can We Solve?

Source: Bixby, 2002
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More on Vertices
Farkas LemmaFurther topics in LP

• Numerical stability and ill conditioning

• Lagrangian relaxation

• Column generation
• Decomposition methods:

• Dantzig Wolfe decomposition
• Benders decomposition
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More on Vertices
Farkas LemmaBasic Geometric Facts

1. In 4D, how many hyperplanes need to intersect to give a point?

4

2. In 4D, can a point be described by more than 4 hyperplanes?
Yes, just think of a pyramid in 3D

3. Intersection of n hyperplanes in n dimensions: when do they uniquely
identify a point?
when the rank of the matrix A of the linear system is n (or A is
nonsingular)
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Farkas LemmaVertices of Polyhedra

A vertex of a polyhedron is a point that is a feasible solution to the system:

a11x1 + a12x2 + · · · + a1nxn ≤ b1
a21x1 + a22x2 + · · · + a2nxn ≤ b2

...
...

am1x1 + am2x2 + · · · + amnxn ≤ bm

4. How many constraints are active/tight in a vertex of a polyhedron
Ax ≤ b, A ∈ Rm×n, x ∈ Rn?

at least n, rank of matrix of active constraints is n

5. Does every point x that activates n constraints form a vertex?
no, some maybe not feasible, ie, intersection in a point outside of the
feasibility region

6. Can a vertex activate more than n constraints?
Yes, just look at the pyramid in 3 dim. Rank of the matrix of active
constraints is still n
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7. What if there are more variables than constraints? If m > n then we can
always find a subset and then activate but what if m < n, can we have a
vertex?

Not necessarily. In LP we deal with this issue by adding slack variables,
they make us choose arbitrarily a vertex

8. Combinatorial explosion of vertices: how many constraints and vertices
has an n-dimensional hypercube?
To define a cube we need 6 cosntraints and there are 23 vertices. For an
n-hypercube we need 2n constraints and there are 2n constraints

9. If m constraints and n variables, m > n, what is an upper bound to the
number of vertices?
the number of possible active constraints is

(m
n

)
it is an upper bound because:

• some combinations of constraints will not define a vertex, ie, if rows of
matrix not independent

• some vertices may activate more than n constraints and hence the same
vertex can be given by more than n constraints

13
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More on Vertices
Farkas LemmaTableaux and Vertices

10. One tableau =⇒ one vertex of the feasible region
One tableau ⇐= one vertex of the feasible region
One tableau ⇐⇒ one vertex of the feasible region

One tableau��⇐= one vertex of the feasible region
degenerate vertices have several tableau associated

11. max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

x1 x2 x3 x4 −z b
x2 0 1 1/5 −1/4 0 2
x1 1 0 −1/5 1/2 0 8

0 0 −2/5 −1 1 −64

How many (x3, x4) = (0, 0) are non basic, what does this tell us about
the constraints?
They are active
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12. max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

x1 x2 x3 x4 −z b
x3 0 0 1 1/2 0 1
x1 1 1 0 −1/2 0 1

0 −2 0 1/2 1 −1

How many (x2, x4) = (0, 0) is non basic, what does this tell us about the
constraints?

They are active, x2 = 0 =⇒ x2 ≥ 0 is active.

13. If in the original space of the problem we had 3 variables, and there are 6
constraints, how many constraints would be active?
3 constraints. With slack variables we would have 6 variables in all, if
any of them is positive the constraint xi ≥ 0 of the original variables
would be active, otherwise the corresponding constraint of the original
problem are active.
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constraints, how many constraints would be active?

3 constraints. With slack variables we would have 6 variables in all, if
any of them is positive the constraint xi ≥ 0 of the original variables
would be active, otherwise the corresponding constraint of the original
problem are active.
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14. For the general case with n original variables:
One basic feasible solution ⇐⇒ a matrix of active constraints has rank
n. True or False?

True

15. Let a tableau be associated with a solution that makes exactly n + 1
constraint active, what can we say about the corresponding basic and
non-basic variable values?
one basic variable is zero

16. what is the algebric definition of adjacency in 2, 3 and n dimensions?
two vertices are adjacent iff:

• they have at least n − 1 active constraints in common

• rank of common active constraints is n − 1

17. How does this condition translate in terms of tableau?
For what seen above this translates in n − 1 variables in common in the
tableau

16
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Farkas Lemma

We now look at Farkas Lemma with two objectives:

• giving another proof of strong duality

• understanding a certificate of infeasibility

19
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Lemma (Farkas)

Let A ∈ Rm×n and b ∈ Rm. Then,

either I . ∃x ∈ Rn : Ax = b and x ≥ 0

or II . ∃y ∈ Rm : yTA ≥ 0T and yTb < 0

Easy to see that both I and II cannot occur together:

(0 ≤) yTAx = yTb (< 0)
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More on Vertices
Farkas LemmaGeometric interpretation of Farkas L.

Linear combination of ai with nonnegative terms generates a convex cone:

{λ1a1 + . . .+ λnan, | λ1, . . . , λn ≥ 0}

Polyhedral cone: C = {x | Ax ≤ 0}, intersection of many ax ≤ 0
Convex hull of rays pi = {λiai , λi ≥ 0}

Either point b lies in convex cone C
or ∃ hyperplane h passing through point 0 h = {x ∈ Rm : yTx = 0} for

y ∈ Rm such that all vectors a1, . . . , an (and thus C ) lie on one side
and b lies (strictly) on the other side (ie, yTai ≥ 0,∀i = 1 . . . n and
yTb < 0).
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Corollary

(i) Ax = b has sol x ≥ 0 ⇐⇒ ∀y ∈ Rm with yTA ≥ 0T , yTb ≥ 0
(ii) Ax ≤ b has sol x ≥ 0 ⇐⇒ ∀y ≥ 0 with yTA ≥ 0T , yTb ≥ 0
(iii) Ax ≤ 0 has sol x ∈ Rn ⇐⇒ ∀y ≥ 0 with yTA = 0T , yTb ≥ 0

i) =⇒ ii):
Ā = [A | Im]
Ax ≤ b has sol x ≥ 0 ⇐⇒ Āx̄ = b has sol x̄ ≥ 0
By (i):

∀y ∈ Rm

yTb ≥ 0, yT Ā ≥ 0
yTA ≥ 0
y ≥ 0

relation with Fourier &
Moutzkin method
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yTA ≥ 0
y ≥ 0

relation with Fourier &
Moutzkin method

22



More on Vertices
Farkas LemmaVariants of Farkas Lemma

Corollary

(i) Ax = b has sol x ≥ 0 ⇐⇒ ∀y ∈ Rm with yTA ≥ 0T , yTb ≥ 0
(ii) Ax ≤ b has sol x ≥ 0 ⇐⇒ ∀y ≥ 0 with yTA ≥ 0T , yTb ≥ 0
(iii) Ax ≤ 0 has sol x ∈ Rn ⇐⇒ ∀y ≥ 0 with yTA = 0T , yTb ≥ 0

i) =⇒ ii):
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yTA ≥ 0
y ≥ 0

relation with Fourier &
Moutzkin method

22



More on Vertices
Farkas LemmaStrong Duality by Farkas Lemma

(P) max{cTx | Ax ≤ b, x ≥ 0}

Assume P has opt sol x∗ with value z∗. We find that D has opt sol as well
and its value coincide with z∗.

Opt value for P:

γ = cTx∗

We know by assumption:

Ax ≤ b
cTx ≥ γ has sol x ≥ 0

and ∀ε > 0
Ax ≤ b
cTx ≥ γ + ε

has no sol x ≥ 0

Let’s define:

Â =

[
A
−cT

]
b̂ =

[
b

−γ − ε

]
and consider Âx ≤ b̂0 and Âx ≤ b̂ε
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we apply variant (ii) of Farkas’ Lemma:

For ε > 0, Âx ≤ b̂ε has no sol x ≥ 0
is equivalent to:
there exists ŷ = (u, z) ∈ Rm+1,

ŷ ≥ 0
ŷT Â ≥ 0
ŷTbε < 0

Then

ATu ≥ zc
bTu < z(γ + ε)

For ε = 0, Âx ≤ b̂0 has sol x ≥ 0
is equivalent to:
there exists ŷ = (u, z) ∈ Rm+1,

ŷ ≥ 0
ŷT Â ≥ 0
ŷTb0 ≥ 0

Then

ATu ≥ zc
bTu ≥ zγ

Hence, z > 0 or z = 0 would contradict the separation of cases.

We can set v = 1
z u ≥ 0

ATv ≥ c
bTv < γ + ε

v is feasible sol of D with objective
value < γ + ε

By weak duality γ is lower bound for
D. Since D bounded and feasible then
there exists y∗:

γ ≤ bTy∗ < γ + ε ∀ε > 0

which implies bTy∗ = γ
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For ε > 0, Âx ≤ b̂ε has no sol x ≥ 0
is equivalent to:
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ŷT Â ≥ 0
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We can set v = 1
z u ≥ 0

ATv ≥ c
bTv < γ + ε

v is feasible sol of D with objective
value < γ + ε

By weak duality γ is lower bound for
D. Since D bounded and feasible then
there exists y∗:

γ ≤ bTy∗ < γ + ε ∀ε > 0

which implies bTy∗ = γ
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ŷ ≥ 0
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which implies bTy∗ = γ



More on Vertices
Farkas LemmaCertificate of Infeasibility

Farkas Lemma provides a way to certificate infeasibility.

Theorem

Given a certificate y∗ it is easy to check the conditions (by linear algebra):

ATy∗ ≥ 0
by∗ < 0

Why would y∗ be a certificate of infeasibility?
Proof (by contradiction)
Assume, ATy∗ ≥ 0 and by∗ < 0.
Moreover assume ∃x∗: Ax∗ = b, x∗ ≥ 0,then:

(≥ 0) (y∗)T

Ax∗ =

(y∗)T

b

(< 0)

Contradiction
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Farkas Lemma

General form:

max cT x
A1x = b1
A2x ≤ b2
A3x ≥ b3

x ≥ 0

infeasible ⇔ ∃y∗

bT
1 y1 + bT

2 y2 + bT
3 y3 > 0

AT
1 y1 + AT

2 y2 + AT
3 y3 ≤ 0
y2 ≤ 0
y3 ≥ 0

Example

max cT x
x1 ≤ 1
x1 ≥ 2

bT
1 y1 + bT

2 y2 > 0
AT

1 y1 + AT
2 y2 ≤ 0
y1 ≤ 0
y2 ≥ 0

y1 + 2y2 > 0
y1 + y2 ≤ 0

y1 ≤ 0
y2 ≥ 0

y1 = −1, y2 = 1 is a valid certificate.
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More on Vertices
Farkas Lemma

• Observe that it is not unique!

• It can be reported in place of the dual solution because same dimension.

• To repair infeasibility we should change the primal at least so much as
that the certificate of infeasibility is no longer valid.

• Only constraints with yi 6= 0 in the certificate of infeasibility cause
infeasibility

28



More on Vertices
Farkas LemmaDuality: Summary

• Derivation:

1. bounding
2. multipliers
3. recipe
4. Lagrangian

• Theory:
• Symmetry
• Weak duality theorem
• Strong duality theorem
• Complementary slackness theorem
• Farkas Lemma:

Strong duality + Infeasibility certificate

• Dual Simplex

• Economic interpretation

• Geometric Interpretation

• Sensitivity analysis

29



More on Vertices
Farkas LemmaResume

Advantages of considering the dual formulation:

• proving optimality (although the simplex tableau can already do that)

• gives a way to check the correctness of results easily

• alternative solution method (ie, primal simplex on dual)

• sensitivity analysis

• solving P or D we solve the other for free

• certificate of infeasibility
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