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Coordinate Change
Diagonalization
ApplicationsResume

• Linear transformations and proofs that a given mapping is linear

• range and null space, and rank and nullity of a transformation,
rank-nullity theorem

• two-way relationship between matrices and linear transformations

• change from standard to arbitrary basis

• change of basis from B to B ′
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Coordinate Change
Diagonalization
ApplicationsChange of Basis for a Lin. Transf.

We saw how to find A for a transformation T : Rn → Rm using standard
basis in both Rn and Rm. Now: is there a matrix that represents T wrt two
arbitrary bases B and B ′?
Theorem
Let T : Rn → Rm be a linear transformation
and B = {v1, v2, . . . , vn} and B ′ = {v′1, v′2, . . . , v′n} be bases of Rn and Rm.
Then for all x ∈ Rn, [T (x)]B′ = M[x]B
where M = A[B,B′] is the m × n matrix with the ith column equal to
[T (vi )]B′ , the coordinate vector of T (vi ) wrt the basis B ′.

Proof:
change B to standard x = Pn×n

B [x]B ∀x ∈ Rn

↓
perform linear transformation T (x) = Ax = APn×n

B [x]B
in standard coordinates

↓
change to basis B ′ [u]B′ = (Pm×m

B′ )−1u ∀u ∈ Rm

[T (x)]B′ = (Pm×m
B′ )−1APn×n

B [x]B
M = (Pm×m

B′ )−1APn×n
B 5
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How is M done?

• PB = [v1 v2 . . . vn]

• APB = A[v1 v2 . . . vn] = [Av1 Av2 . . . Avn]

• Avi = T (vi ): APB = [T (v1) T (v2) . . . T (vn)]

• M = P−1
B′ APB = P−1

B′ = [P−1
B′ T (v1) P−1

B′ T (v2) . . . P−1
B′ T (vn)]

• M = [[T (v1)]B′ [T (v2)]B′ . . . [T (vn)]B′ ]

Hence, if we change the basis from the standard basis of Rn and Rm the
matrix representation of T changes
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Particular case m = n:

Theorem
Let T : Rn → Rn be a linear transformation
and B = {x1, x2, . . . , xn} be a basis Rn.
Let A be the matrix corresponding to T in standard coordinates: T (x) = Ax.
Let

P =
[
x1 x2 · · · xn

]
be the matrix whose columns are the vectors of B. Then for all x ∈ Rn,

[T (x)]B = P−1AP[x]B

Or, the matrix A[B,B] = P−1AP performs the same linear transformation as
the matrix A but expressed it in terms of the basis B.
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Definition

A square matrix C is similar (represent the same linear transformation) to the
matrix A if there is an invertible matrix P such that

C = P−1AP.

Similarity defines an equivalence relation:

• (reflexive) a matrix A is similar to itself

• (symmetric) if C is similar to A, then A is similar to C
C = P−1AP, A = Q−1CQ, Q = P−1

• (transitive) if D is similar to C , and C to A, then D is similar to A
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Example

2−2

1

−1

x

y

2−2

1

−1

x

y

• x2 + y2 = 1 circle in standard form

• x2 + 4y2 = 4 ellipse in standard form

• 5x2 + 5y2 − 6xy = 2 ??? Try rotating π/4 anticlockwise

AT =

[
cos θ − sin θ
sin θ cos θ

]
=

[
1√
2
− 1√

2
1√
2

1√
2

]
= P

v = P[v]B ⇐⇒
[
x
y

]
=

[
1√
2
− 1√

2
1√
2

1√
2

] [
X
Y

]
X 2 + 4Y 2 = 1
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Example

Let T : R2 → R2:

T
([

x
y

])
=

[
x + 3y
−x + 5y

]
What is its effect on the xy -plane?
Let’s change the basis to

B = {v1, v2} =
{[

1
1

]
,

[
3
1

]}
Find the matrix of T in this basis:

• C = P−1AP, A matrix of T in standard basis, P is transition matrix
from B to standard

C = P−1AP =
1
2

[
−1 3
1 −1

] [
1 3
−1 5

] [
1 3
1 1

]
=

[
4 0
0 2

]
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Example (cntd)

• the B coordinates of the B basis vectors are

[v1]B =

[
1
0

]
B
, [v2]B =

[
0
1

]
B

• so in B coordinates T is a stretch in the direction v1 by 4 and in dir. v2
by 2:

[T (v1)]B =

[
4 0
0 2

] [
1
0

]
B
=

[
4
0

]
B
= 4[v1]B

• The effect of T is however the same no matter what basis, only the
matrices change! So also in the standard coordinates we must have:

Av1 = 4v1 Av2 = 2v2
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• Matrix representation of a transformation with respect to two given basis

• Similarity of square matrices
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Coordinate Change
Diagonalization
ApplicationsEigenvalues and Eigenvectors

(All matrices from now on are square n × n matrices and all vectors in Rn)

Definition
Let A be a square matrix.

• The number λ is said to be an eigenvalue of A if for some non-zero
vector x,

Ax = λx

• Any non-zero vector x for which this equation holds is called
eigenvector for eigenvalue λ or
eigenvector of A corresponding to eigenvalue λ
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Diagonalization
ApplicationsFinding Eigenvalues

• Determine solutions to the matrix equation Ax = λx

• Let’s put it in standard form, using λx = λIx:

(A− λI )x = 0

• Bx = 0 has solutions other than x = 0 precisely when det(B) = 0.

• hence we want det(A− λI ) = 0:

Definition (Charachterisitc polynomial)

The polynomial |A− λI | is called the characteristic polynomial of A, and
the equation |A− λI | = 0 is called the characteristic equation of A.
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Example

A =

[
7 −15
2 −4

]

A− λI =
[
7 −15
2 −4

]
− λ

[
1 0
0 1

]
=

[
7− λ −15
2 −4− λ

]
The characteristic polynomial is

|A− λI | =
∣∣∣∣7− λ −15

2 −4− λ

∣∣∣∣
= (7− λ)(−4− λ) + 30
= λ2 − 3λ+ 2

The characteristic equation is

λ2 − 3λ+ 2 = (λ− 1)(λ− 2) = 0

hence 1 and 2 are the only eigenvalues of A
16



Coordinate Change
Diagonalization
ApplicationsFinding Eigenvectors

• Find non-trivial solution to (A− λI )x = 0 corresponding to λ

• zero vectors are not eigenvectors!

Example

A =

[
7 −15
2 −4

]
Eigenvector for λ = 1:

A− I =
[
6 −15
2 −5

]
→ RREF· · · →

[
1 − 5

2
0 0

]
v = t

[
5
2

]
, t ∈ R

Eigenvector for λ = 2:

A− 2I =
[
5 −15
2 −6

]
→ RREF· · · →

[
1 −3
0 0

]
v = t

[
3
1

]
, t ∈ R
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Example

A =

4 0 4
0 4 4
4 4 8


The characteristic equation is

|A− λI | =

∣∣∣∣∣∣
4− λ 0 4

0 4− λ 4
4 4 8− λ

∣∣∣∣∣∣
= (4− λ)((−4− λ)(8− λ)− 16) + 4(−4(4− λ))
= (4− λ)((−4− λ)(8− λ)− 16)− 16(4− λ)
= (4− λ)((−4− λ)(8− λ)− 16− 16)
= (4− λ)λ(λ− 12)

hence the eigenvalues are 4, 0, 12.
Eigenvector for λ = 4, solve (A− 4I )x = 0:

A−4I =

4− 4 0 4
0 4− 4 4
4 4 8− 4

→ RREF· · · →

1 1 0
0 0 1
0 0 0

 v = t

−1
1
0

 , t ∈ R
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Example

A =

−3 −1 −2
1 −1 1
1 1 0


The characteristic equation is

|A− λI | =

∣∣∣∣∣∣
−3− λ −1 −2

1 −1− λ 1
1 1 −λ

∣∣∣∣∣∣
= (−3− λ)(λ2 + λ− 1) + (−λ− 1)− 2(2 + λ)
= −(λ3 + 4λ2 + 5λ+ 2)

if we discover that −1 is a solution then (λ+ 1) is a factor of the polynomial:

−(λ+ 1)(aλ2 + bλ+ c)

from which we can find a = 1, c = 2, b = 3 and

−(λ+ 1)(λ+ 2)(λ+ 1) = −(λ+ 1)2(λ+ 2)

the eigenvalue −1 has multiplicity 2
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• The set of eigenvectors corresponding to the eigenvalue λ together with
the zero vector 0, is a subspace of Rn.
because it corresponds with null space N(A− λI )

Definition (Eigenspace)

If A is an n × n matrix and λ is an eigenvalue of A, then the eigenspace of
the eigenvalue λ is the nullspace N(A− λI ) of Rn.

• the set S = {x | Ax = λx} is always a subspace but only if λ is an
eigenvalue then dim(S) ≥ 1.
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Coordinate Change
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ApplicationsEigenvalues and the Matrix

Links between eigenvalues and properties of the matrix

• let A be an n×n matrix, then the characteristic polynomial has degree n:

p(λ) = |A− λI | = (−1)n(λn + an−1λ
n−1 + · · ·+ a0)

• in terms of eigenvalues λ1, λ2, . . . , λn the characteristic polynomial is:

p(λ) = |A− λI | = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn)

Theorem
The determinant of an n × n matrix A is equal to the product of its
eigenvalues.

Proof: if λ = 0 in the first point above, then

p(0) = |A| = (−1)na0 = (−1)n(−1)nλ1λ2 . . . λn = λ1λ2 . . . λn
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• The trace of a square matrix A is the sum of the entries on its main
diagonal.

Theorem
The trace of an n × n matrix is equal to the sum of its eigenvalues.

Proof:

|A− λI | = (−1)n(λn + an−1λ
n−1 + · · ·+ a0)

= (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn)

the proof follows by comparing the coefficients of (−λ)n−1
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ApplicationsDiagonalization

Recall: Square matrices are similar if there is an invertible matrix P such that
P−1AP = M.

Definition (Diagonalizable matrix)

The matrix A is diagonalizable if it is similar to a diagonal matrix; that is,
if there is a diagonal matrix D and an invertible matrix P such that
P−1AP = D

Example

A =

[
7 −15
2 −4

]

P =

[
5 3
2 1

]
P−1 =

[
−1 3
2 −5

]

P−1AP = D =

[
1 0
0 2

]
How was such a matrix P found?

When a matrix is diagonalizable?
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• Let’s assume A is diagonalizable, then P−1AP = D where

D = diag(λ1, λ2, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn



• AP = PD

AP = A
[
v1 · · · vn

]
=
[
Av1 · · · Avn

]

PD =
[
v1 · · · vn

]

λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn

 =
[
λ1v1 · · · λnvn

]

• Hence: Av1 = λ1v1, Av2 = λ2v2, · · · Avn = λnvn
24
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• since P−1 exists then none of the above Avi = λivi has 0 as a solution
or else P would have a zero column.

• this is equivalent to λi and vi are eigenvalues and eigenvectors and that
they are linearly independent.

• the converse is also true: P−1 is invertible and Av = λv implies that

P−1AP = P−1PD = D

Theorem
An n× n matrix A is diagonalizable if and only if it has n linearly independent
eigenvectors.

Theorem
An n × n matrix A is diagonalizable if and only if there is a basis of Rn

consisting only of eigenvectors of A.
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Example

A =

[
7 −15
2 −4

]
and 1 and 2 are the eigenvalues with eigenvectors:

v1 =

[
5
2

]
v2 =

[
3
1

]

P =
[
v1 v2

]
=

[
5 3
2 1

]
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Example

A =

4 0 4
0 4 4
4 4 8


has eigenvalues 0, 4, 12 and corresponding eigenvectors:

v1 =

−1
1
0

 , v2 =

−1
−1
1

 , v3 =

1
1
2



P =

−1 −1 1
1 −1 1
0 1 2

 D =

4 0 0
0 0 0
0 0 12


We can choose any order, provided we are consistent:

P =

−1 −1 1
−1 1 1
1 0 2

 D =

0 0 0
0 4 0
0 0 12
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ApplicationsGeometrical Interpretation

• Let’s look at A as the matrix representing a linear transformation
T = TA in standard coordinates, ie, T (x) = Ax.

• let’s assume A has a set of linearly independent vectors
B = {v1, v2, . . . , vn} corresponding to the eigenvalues λ1, λ2, . . . , λn,
then B is a basis of Rn.

• what is the matrix representing T wrt the basis B?

A[B,B] = P−1AP

where P =
[
v1 v2 · · · vn

]
(check earlier theorem today)

• hence, the matrices A and A[B,B] are similar, they represent the same
linear transformation:

• A in the standard basis

• A[B,B] in the basis B of eigenvectors of A

• A[B,B] =
[
[T (v1)]B [T (v2)]B · · · [T (vn)]B

]
 for those vectors in

particular T (vi ) = Avi = λivi hence diagonal matrix  A[B,B] = D 28
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• What does this tell us about the linear transformation TA?

For any x ∈ Rn [x]B =


b1
b2
...
bn


B

its image in T is easy to calculate in B coordinates:

[T (x)]B =


λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn



b1
b2
...
bn


B

=


λ1b1
λ2b2
...

λnbn


B

• it is a stretch in the direction of the eigenvector vi by a factor λi !

• the line x = tvi , t ∈ R is fixed by the linear transformation T in the
sense that every point on the line is stretched to another point on the
same line. 29
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Geometric interpretation

• Let A and B = P−1AP, ie, be similar.

• geometrically: TA is a linear transformation in standard coordinates
TB is the same linear transformation T in coordinates wrt the basis
given by the columns of P.

• we have seen that T has the intrinsic property of fixed lines and
stretches. This property does not depend on the coordinate system used
to express the vectors. Hence:

Theorem
Similar matrices have the same eigenvalues, and the same corresponding
eigenvectors expressed in coordinates with respect to different bases.

Algebraically:

• A and B have same polynomial and hence eigenvalues

|B − λI | = |P−1AP − λI | = |P−1AP − λP−1IP|
= |P−1(A− λI )P| = |P−1||A− λI ||P|
= |A− λI |
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• P transition matrix from the basis S to the standard coords to coords

v = P[v]S [v]S = P−1v

• Using Av = λv:

B[v]S = P−1AP[v]S
= P−1Av
= P−1λv
= λP−1v
= λ[v]S

hence [v]S is eigenvector of B corresponding to eigenvalue λ
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Example

A =

[
4 1
−1 2

]
has characteristic polynomial λ2 − 6λ+ 9 = (λ− 3)2.
The eigenvectors are:[

1 1
−1 −1

] [
x1
x2

]
=

[
0
0

]

v = [−1, 1]T

hence any two eigenvectors are scalar multiple of each others and are linearly
dependent.

The matrix A is therefore not diagonalizable.
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Example

A =

[
0 −1
1 0

]
has characteristic equation λ2 + 1 and hence it has no real eigenvalues.
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Theorem

If an n× n matrix A has n different eigenvalues then (it has a set of n linearly
independent eigenvectors) is diagonalizable.

• Proof by contradiction

• n lin indep. is necessary condition but n different eigenvalues not.

Example

A =

3 −1 1
0 2 0
1 −1 3


the characteristic polynomial is −(λ− 2)2(λ− 4). Hence 2 has multiplicity 2.
Can we find two corresponding linearly independent vectors?
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Example (cntd)

(A− 2I ) =

1 −1 1
0 0 0
1 −1 1

→ RREF· · · →

1 −1 1
0 0 0
0 0 0



x = s

11
0

+ t

−10
1

 = sv1 + tv2 s, t ∈ R

the two vectors are lin. indep.

(A− 4I ) =

−1 −1 1
0 −2 0
1 −1 −1

→ RREF· · · →

1 0 −1
0 1 0
0 0 0

 v3 =

10
1



P =

1 1 −1
0 1 0
1 0 1

 P−1AP =

4 0 0
0 2 0
0 0 2
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Example

A =

−3 −1 −21 −1 1
1 1 0


Eigenvalue λ1 = −1 has multiplicity 2; λ2 = −2.

(A+ I ) =

−2 −1 −21 0 1
1 1 1

→ RREF· · · →

1 0 1
0 1 0
0 0 0


The rank is 2.
The null space (A+ I ) therefore has dimension 1 (rank-nullity theorem).
We find only one linearly independent vector: x = [−1, 0, 1]T .
Hence the matrix A cannot be diagonalized.
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Definition (Algebraic and geometric multiplicity)

An eigenvalue λ0 of a matrix A has

• algebraic multiplicity k if k is the largest integer such that (λ− λ0)
k is a

factor of the characteristic polynomial

• geometric multiplicity k if k is the dimension of the eigenspace of λ0, ie,
dim(N(A− λ0I ))

Theorem
For any eigenvalue of a square matrix, the geometric multiplicity is no more
than the algebraic multiplicity

Theorem
A matrix is diagonalizable if and only if all its eigenvalues are real numbers
and, for each eigenvalue, its geometric multiplicity equals the algebraic
multiplicity.
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• Characteristic polynomial and characteristic equation of a matrix

• eigenvalues, eigenvectors, diagonalization

• finding eigenvalues and eigenvectors

• eigenspace

• eigenvalues are related to determinant and trace of a matrix

• diagonalize a diagonalizable matrix

• conditions for digonalizability

• diagonalization as a change of basis, similarity

• geometric effect of linear transformation via diagonalization
38
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• find powers of matrices

• solving systems of simultaneous linear difference equations

• Markov chains

• systems of differential equations
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ApplicationsPowers of Matrices

An = AAA · · ·A︸ ︷︷ ︸
n times

If we can write: P−1AP = D then A = PDP−1

An = AAA · · ·A︸ ︷︷ ︸
n times

= (PDP−1)(PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
n times

= PD(P−1P)D(P−1P)D(P−1P) · · ·DP−1

= P DDD · · ·D︸ ︷︷ ︸
n times

P−1

= PDnP−1

then closed formula to calculate the power of a matrix.
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• A difference equation is an equation linking terms of a sequence to
previous terms, eg:

xt+1 = 5xt − 1

is a first order difference equation.

• a first order difference equation can be fully determined if we know the
first term of the sequence (initial condition)

• a solution is an expression of the terms xt

xt+1 = axt =⇒ xt = atx0
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Suppose the sequences xt and yt are related as follows:
x0 = 1, y0 = 1 for t ≥ 0

xt+1 = 7xt − 15yt
yt+1 = 2xt − 4yt

Coupled system of difference equations.

Let

xt =

[
xt
yt

] then xt+1 = Axt and 0 = [1, 1]T and

A =

[
7 −15
2 −4

]
Then:

x1 = Ax0
x2 = Ax1 = A(Ax0) = A2x0
x3 = Ax2 = A(A2x0) = A3x0
...

xt = Atx0
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• Suppose two supermarkets compete for customers in a region with
20000 shoppers.

• Assume no shopper goes to both supermarkets in a week.

• The table gives the probability that a shopper will change from one to
another supermarket:

From A From B From none
To A 0.70 0.15 0.30
To B 0.20 0.80 0.20
To none 0.10 0.05 0.50

(note that probabilities in the columns add up to 1)

• Suppose that at the end of week 0 it is known that 10000 went to A,
8000 to B and 2000 to none.

• Can we predict the number of shoppers at each supermarket in any
future week t? And the long-term distribution?
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Formulation as a system of difference equations:

• Let xt be the percentage of shoppers going in the two supermarkets or
none

• then we have the difference equation:

xt = Axt−1

A =

0.70 0.15 0.30
0.20 0.80 0.20
0.10 0.05 0.50

 , xt =
[
xt yt zt

]
• a Markov chain (or process) is a closed system of a fixed population
distributed into n diffrerent states, transitioning between the states
during specific time intervals.

• The transition probabilities are known in a transition matrix A
(coefficients all non-negative + sum of entries in the columns is 1)

• state vector xt , entries sum to 1.
45
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• A solution is given by (assuming A is diagonalizable):

xt = Atx0 = (PDtP−1)x0

• let x0 = Pz0 and z0 = P−1x0 =
[
b1 b2 · · · bn

]T be the representation
of x0 in the basis of eigenvectors, then:

xt = PDtP−1x0 = b1λ
t
1v1 + b2λ

t
2v2 + · · ·+ bnλ

t
nvn

• xt = b1(1)tv1 + b2(0.6)tv2 + · · ·+ bn(0.4)tvn

• limt→∞ 1t = 1, limt→∞ 0.6t = 0 hence the long-term distribution is

q = b1v1 = 0.125

34
1

 =

0.3750.500
0.125


• Th.: if A is the transition matrix of a regular Markov chain, then λ = 1
is an eigenvalue of multiplicity 1 and all other eigenvalues satisfy |λ| < 1
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