DM554
 Linear and Integer Programming

Lecture 9
 Diagonalization

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

1. More on Coordinate Change

2. Diagonalization
3. Applications

Resume

- Linear transformations and proofs that a given mapping is linear
- range and null space, and rank and nullity of a transformation, rank-nullity theorem
- two-way relationship between matrices and linear transformations
- change from standard to arbitrary basis
- change of basis from B to B^{\prime}

Outline

1. More on Coordinate Change

2. Diagonalization

Change of Basis for a Lin. Transf.

We saw how to find A for a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ using standard basis in both \mathbb{R}^{n} and \mathbb{R}^{m}. Now: is there a matrix that represents T wrt two arbitrary bases B and B^{\prime} ?
Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $B^{\prime}=\left\{\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \ldots, \mathbf{v}_{n}^{\prime}\right\}$ be bases of \mathbb{R}^{n} and \mathbb{R}^{m}. Then for all $\mathbf{x} \in \mathbb{R}^{n}, \quad[T(\mathbf{x})]_{B^{\prime}}=M[\mathbf{x}]_{B}$ where $M=A_{\left[B, B^{\prime}\right]}$ is the $m \times n$ matrix with the ith column equal to $\left[T\left(\mathbf{v}_{i}\right)\right]_{B^{\prime}}$, the coordinate vector of $T\left(\mathbf{v}_{i}\right)$ wrt the basis B^{\prime}.

Proof:

$$
\text { change } B \text { to standard } \quad \mathbf{x}=P_{B}^{n \times n}[\mathbf{x}]_{B} \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

perform linear transformation $T(\mathbf{x})=A \mathbf{x}=A P_{B}^{n \times n}[\mathbf{x}]_{B}$ in standard coordinates

$$
\begin{aligned}
& {[\mathbf{u}]_{B^{\prime}}=\left(P_{B^{\prime}}^{m \times m}\right)^{-1} \mathbf{u} \quad \forall \mathbf{u} \in \mathbb{R}^{m}} \\
& {[T(\mathbf{x})]_{B^{\prime}}=\left(P_{B^{\prime} \times m}^{m \times m}\right)^{-1} A P_{B}^{n \times n}[\mathbf{x}]_{B}} \\
& M=\left(P_{B^{\prime}}^{m \times m}\right)^{-1} A P_{B}^{n \times n}
\end{aligned}
$$

How is M done?

- $P_{B}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}\end{array}\right]$
- $A P_{B}=A\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}\end{array}\right]=\left[\begin{array}{llll}A \mathbf{v}_{1} & A \mathbf{v}_{2} & \ldots & A \mathbf{v}_{n}\end{array}\right]$
- $A \mathbf{v}_{i}=T\left(\mathbf{v}_{i}\right): A P_{B}=\left[T\left(\mathbf{v}_{1}\right) T\left(\mathbf{v}_{2}\right) \ldots T\left(\mathbf{v}_{n}\right)\right]$
- $M=P_{B^{\prime}}^{-1} A P_{B}=P_{B^{\prime}}^{-1}=\left[P_{B^{\prime}}^{-1} T\left(\mathbf{v}_{1}\right) P_{B^{\prime}}^{-1} T\left(\mathbf{v}_{2}\right) \ldots P_{B^{\prime}}^{-1} T\left(\mathbf{v}_{n}\right)\right]$
- $M=\left[\left[T\left(\mathbf{v}_{1}\right)\right]_{B^{\prime}}\left[T\left(\mathbf{v}_{2}\right)\right]_{B^{\prime}} \ldots\left[T\left(\mathbf{v}_{n}\right)\right]_{B^{\prime}}\right]$

Hence, if we change the basis from the standard basis of \mathbb{R}^{n} and \mathbb{R}^{m} the matrix representation of T changes

Similarity

Particular case $m=n$:
Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation
and $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ be a basis \mathbb{R}^{n}.
Let A be the matrix corresponding to T in standard coordinates: $T(\mathbf{x})=A \mathbf{x}$. Let

$$
P=\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}
\end{array}\right]
$$

be the matrix whose columns are the vectors of B. Then for all $\mathrm{x} \in \mathbb{R}^{n}$,

$$
[T(\mathbf{x})]_{B}=P^{-1} A P[\mathbf{x}]_{B}
$$

Or, the matrix $A_{[B, B]}=P^{-1} A P$ performs the same linear transformation as the matrix A but expressed it in terms of the basis B.

Similarity

Definition
A square matrix C is similar (represent the same linear transformation) to the matrix A if there is an invertible matrix P such that

$$
C=P^{-1} A P
$$

Similarity defines an equivalence relation:

- (reflexive) a matrix A is similar to itself
- (symmetric) if C is similar to A, then A is similar to C $C=P^{-1} A P, \quad A=Q^{-1} C Q, \quad Q=P^{-1}$
- (transitive) if D is similar to C, and C to A, then D is similar to A

Example

- $x^{2}+y^{2}=1$ circle in standard form
- $x^{2}+4 y^{2}=4$ ellipse in standard form
- $5 x^{2}+5 y^{2}-6 x y=2$??? Try rotating $\pi / 4$ anticlockwise

$$
\begin{aligned}
& A_{T}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=P \\
& \mathbf{v}=P[\mathbf{v}]_{B} \Longleftrightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right] \\
& X^{2}+4 Y^{2}=1
\end{aligned}
$$

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+3 y \\
-x+5 y
\end{array}\right]
$$

What is its effect on the $x y$-plane?
Let's change the basis to

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\}
$$

Find the matrix of T in this basis:

- $C=P^{-1} A P, A$ matrix of T in standard basis, P is transition matrix from B to standard

$$
C=P^{-1} A P=\frac{1}{2}\left[\begin{array}{cc}
-1 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
-1 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

Example (cntd)

- the B coordinates of the B basis vectors are

$$
\left[\mathbf{v}_{1}\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{B}, \quad\left[\mathbf{v}_{2}\right]_{B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]_{B}
$$

- so in B coordinates T is a stretch in the direction \mathbf{v}_{1} by 4 and in dir. \mathbf{v}_{2} by 2 :

$$
\left[T\left(\mathbf{v}_{1}\right)\right]_{B}=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{B}=\left[\begin{array}{l}
4 \\
0
\end{array}\right]_{B}=4\left[\mathbf{v}_{1}\right]_{B}
$$

- The effect of T is however the same no matter what basis, only the matrices change! So also in the standard coordinates we must have:

$$
A \mathbf{v}_{1}=4 \mathbf{v}_{1} \quad A \mathbf{v}_{2}=2 \mathbf{v}_{2}
$$

- Matrix representation of a transformation with respect to two given basis
- Similarity of square matrices

2. Diagonalization

Eigenvalues and Eigenvectors

(All matrices from now on are square $n \times n$ matrices and all vectors in \mathbb{R}^{n})

Definition
Let A be a square matrix.

- The number λ is said to be an eigenvalue of A if for some non-zero vector x ,

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

- Any non-zero vector x for which this equation holds is called eigenvector for eigenvalue λ or eigenvector of A corresponding to eigenvalue λ

Finding Eigenvalues

- Determine solutions to the matrix equation $A \mathbf{x}=\lambda \mathbf{x}$
- Let's put it in standard form, using $\lambda \mathbf{x}=\lambda / \mathbf{x}$:

$$
(A-\lambda /) \mathbf{x}=\mathbf{0}
$$

- $B \mathbf{x}=\mathbf{0}$ has solutions other than $\mathbf{x}=\mathbf{0}$ precisely when $\operatorname{det}(B)=0$.
- hence we want $\operatorname{det}(A-\lambda /)=0$:

Definition (Charachterisitc polynomial)
The polynomial $|A-\lambda I|$ is called the characteristic polynomial of A, and the equation $|A-\lambda I|=0$ is called the characteristic equation of A.

Example

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
7 & -15 \\
2 & -4
\end{array}\right] \\
& A-\lambda I=\left[\begin{array}{cc}
7 & -15 \\
2 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
7-\lambda & -15 \\
2 & -4-\lambda
\end{array}\right]
\end{aligned}
$$

The characteristic polynomial is

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
7-\lambda & -15 \\
2 & -4-\lambda
\end{array}\right| \\
& =(7-\lambda)(-4-\lambda)+30 \\
& =\lambda^{2}-3 \lambda+2
\end{aligned}
$$

The characteristic equation is

$$
\lambda^{2}-3 \lambda+2=(\lambda-1)(\lambda-2)=0
$$

hence 1 and 2 are the only eigenvalues of A

Finding Eigenvectors

- Find non-trivial solution to $(A-\lambda I) \mathbf{x}=\mathbf{0}$ corresponding to λ
- zero vectors are not eigenvectors!

Example

$$
A=\left[\begin{array}{cc}
7 & -15 \\
2 & -4
\end{array}\right]
$$

Eigenvector for $\lambda=1$:

$$
A-I=\left[\begin{array}{cc}
6 & -15 \\
2 & -5
\end{array}\right] \rightarrow \stackrel{R R E F}{\cdots} \rightarrow\left[\begin{array}{cc}
1 & -\frac{5}{2} \\
0 & 0
\end{array}\right]
$$

$$
\mathbf{v}=t\left[\begin{array}{l}
5 \\
2
\end{array}\right], t \in \mathbb{R}
$$

Eigenvector for $\lambda=2$:

$$
A-2 I=\left[\begin{array}{ll}
5 & -15 \\
2 & -6
\end{array}\right] \rightarrow \stackrel{\text { RREF }}{\cdots} \rightarrow\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right]
$$

$$
\mathbf{v}=t\left[\begin{array}{l}
3 \\
1
\end{array}\right], t \in \mathbb{R}
$$

Example

$$
A=\left[\begin{array}{lll}
4 & 0 & 4 \\
0 & 4 & 4 \\
4 & 4 & 8
\end{array}\right]
$$

The characteristic equation is

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{ccc}
4-\lambda & 0 & 4 \\
0 & 4-\lambda & 4 \\
4 & 4 & 8-\lambda
\end{array}\right| \\
& =(4-\lambda)((-4-\lambda)(8-\lambda)-16)+4(-4(4-\lambda)) \\
& =(4-\lambda)((-4-\lambda)(8-\lambda)-16)-16(4-\lambda) \\
& =(4-\lambda)((-4-\lambda)(8-\lambda)-16-16) \\
& =(4-\lambda) \lambda(\lambda-12)
\end{aligned}
$$

hence the eigenvalues are $4,0,12$.
Eigenvector for $\lambda=4$, solve $(A-4 I) \mathbf{x}=0$:

$$
A-4 I=\left[\begin{array}{ccc}
4-4 & 0 & 4 \\
0 & 4-4 & 4 \\
4 & 4 & 8-4
\end{array}\right] \rightarrow \stackrel{R R E F}{\cdots} \rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \mathbf{v}=t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], t \in \mathbb{R}
$$

Example

$$
A=\left[\begin{array}{ccc}
-3 & -1 & -2 \\
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

The characteristic equation is

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{ccc}
-3-\lambda & -1 & -2 \\
1 & -1-\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right| \\
& =(-3-\lambda)\left(\lambda^{2}+\lambda-1\right)+(-\lambda-1)-2(2+\lambda) \\
& =-\left(\lambda^{3}+4 \lambda^{2}+5 \lambda+2\right)
\end{aligned}
$$

if we discover that -1 is a solution then $(\lambda+1)$ is a factor of the polynomial:

$$
-(\lambda+1)\left(a \lambda^{2}+b \lambda+c\right)
$$

from which we can find $a=1, c=2, b=3$ and

$$
-(\lambda+1)(\lambda+2)(\lambda+1)=-(\lambda+1)^{2}(\lambda+2)
$$

the eigenvalue -1 has multiplicity 2

Eigenspaces

- The set of eigenvectors corresponding to the eigenvalue λ together with the zero vector 0 , is a subspace of \mathbb{R}^{n}. because it corresponds with null space $N(A-\lambda /)$

Definition (Eigenspace)
If A is an $n \times n$ matrix and λ is an eigenvalue of A, then the eigenspace of the eigenvalue λ is the nullspace $N(A-\lambda /)$ of \mathbb{R}^{n}.

- the set $S=\{\mathbf{x} \mid A \mathbf{x}=\lambda \mathbf{x}\}$ is always a subspace but only if λ is an eigenvalue then $\operatorname{dim}(S) \geq 1$.

Eigenvalues and the Matrix

Links between eigenvalues and properties of the matrix

- let A be an $n \times n$ matrix, then the characteristic polynomial has degree n :

$$
p(\lambda)=|A-\lambda I|=(-1)^{n}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}\right)
$$

- in terms of eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ the characteristic polynomial is:

$$
p(\lambda)=|A-\lambda I|=(-1)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

Theorem

The determinant of an $n \times n$ matrix A is equal to the product of its eigenvalues.

Proof: if $\lambda=0$ in the first point above, then

$$
p(0)=|A|=(-1)^{n} a_{0}=(-1)^{n}(-1)^{n} \lambda_{1} \lambda_{2} \ldots \lambda_{n}=\lambda_{1} \lambda_{2} \ldots \lambda_{n}
$$

- The trace of a square matrix A is the sum of the entries on its main diagonal.

Theorem
The trace of an $n \times n$ matrix is equal to the sum of its eigenvalues.

Proof:

$$
\begin{aligned}
|A-\lambda I| & =(-1)^{n}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}\right) \\
& =(-1)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)
\end{aligned}
$$

the proof follows by comparing the coefficients of $(-\lambda)^{n-1}$

Diagonalization

Recall: Square matrices are similar if there is an invertible matrix P such that $P^{-1} A P=M$.

Definition (Diagonalizable matrix)
The matrix A is diagonalizable if it is similar to a diagonal matrix; that is, if there is a diagonal matrix D and an invertible matrix P such that $P^{-1} A P=D$

Example

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
7 & -15 \\
2 & -4
\end{array}\right] \\
& P=\left[\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right] \quad P^{-1}=\left[\begin{array}{cc}
-1 & 3 \\
2 & -5
\end{array}\right] \\
& \text { When a matrix is diagonalizable? } \\
& P^{-1} A P=D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

General Method

- Let's assume A is diagonalizable, then $P^{-1} A P=D$ where

$$
D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

- $A P=P D$

$$
\begin{aligned}
& A P=A\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{n}
\end{array}\right] \\
& P D=\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} \mathbf{v}_{1} & \cdots & \lambda_{n} \mathbf{v}_{n}
\end{array}\right]
\end{aligned}
$$

- Hence: $A \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}, \quad A \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{2}, \quad \cdots \quad A \mathbf{v}_{n}=\lambda_{n} \mathbf{v}_{n}$
- since P^{-1} exists then none of the above $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ has $\mathbf{0}$ as a solution or else P would have a zero column.
- this is equivalent to λ_{i} and \mathbf{v}_{i} are eigenvalues and eigenvectors and that they are linearly independent.
- the converse is also true: P^{-1} is invertible and $A \mathbf{v}=\lambda \boldsymbol{v}$ implies that

$$
P^{-1} A P=P^{-1} P D=D
$$

Theorem

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if there is a basis of \mathbb{R}^{n} consisting only of eigenvectors of A.

Example

$$
A=\left[\begin{array}{cc}
7 & -15 \\
2 & -4
\end{array}\right]
$$

and 1 and 2 are the eigenvalues with eigenvectors:

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{l}
5 \\
2
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& P=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right]
\end{aligned}
$$

Example

$$
A=\left[\begin{array}{lll}
4 & 0 & 4 \\
0 & 4 & 4 \\
4 & 4 & 8
\end{array}\right]
$$

has eigenvalues $0,4,12$ and corresponding eigenvectors:

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
1 & -1 & 1 \\
0 & 1 & 2
\end{array}\right] \quad D=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 12
\end{array}\right]
\end{aligned}
$$

We can choose any order, provided we are consistent:

$$
P=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & 0 & 2
\end{array}\right] \quad D=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 12
\end{array}\right]
$$

Geometrical Interpretation

- Let's look at A as the matrix representing a linear transformation $T=T_{A}$ in standard coordinates, ie, $T(\mathbf{x})=A \mathbf{x}$.
- let's assume A has a set of linearly independent vectors $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ corresponding to the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then B is a basis of \mathbb{R}^{n}.
- what is the matrix representing T wrt the basis B ?

$$
A_{[B, B]}=P^{-1} A P
$$

where $P=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]$ (check earlier theorem today)

- hence, the matrices A and $A_{[B, B]}$ are similar, they represent the same linear transformation:
- A in the standard basis
- $A_{[B, B]}$ in the basis B of eigenvectors of A
- $A_{[B, B]}=\left[\left[T\left(\mathbf{v}_{1}\right)\right]_{B}\left[T\left(\mathbf{v}_{2}\right)\right]_{B} \cdots\left[T\left(\mathbf{v}_{n}\right)\right]_{B}\right] \rightsquigarrow$ for those vectors in particular $T\left(\mathbf{v}_{i}\right)=A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ hence diagonal matrix $\rightsquigarrow A_{[B, B]}=D$
- What does this tell us about the linear transformation T_{A} ?

$$
\text { For any } \mathbf{x} \in \mathbb{R}^{n} \quad[\mathbf{x}]_{B}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]_{B}
$$

its image in T is easy to calculate in B coordinates:

$$
[T(\mathbf{x})]_{B}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]_{B}=\left[\begin{array}{c}
\lambda_{1} b_{1} \\
\lambda_{2} b_{2} \\
\vdots \\
\lambda_{n} b_{n}
\end{array}\right]_{B}
$$

- it is a stretch in the direction of the eigenvector \mathbf{v}_{i} by a factor λ_{i} !
- the line $\mathbf{x}=t \mathbf{v}_{i}, t \in \mathbb{R}$ is fixed by the linear transformation T in the sense that every point on the line is stretched to another point on the same line.

Similar Matrices

- Let A and $B=P^{-1} A P$, ie, be similar.
- geometrically: T_{A} is a linear transformation in standard coordinates T_{B} is the same linear transformation T in coordinates wrt the basis given by the columns of P.
- we have seen that T has the intrinsic property of fixed lines and stretches. This property does not depend on the coordinate system used to express the vectors. Hence:

Theorem

Similar matrices have the same eigenvalues, and the same corresponding eigenvectors expressed in coordinates with respect to different bases.

Algebraically:

- A and B have same polynomial and hence eigenvalues

$$
\begin{aligned}
|B-\lambda I| & =\left|P^{-1} A P-\lambda I\right|=\left|P^{-1} A P-\lambda P^{-1} I P\right| \\
& =\left|P^{-1}(A-\lambda I) P\right|=\left|P^{-1}\right||A-\lambda I||P| \\
& =|A-\lambda I|
\end{aligned}
$$

- P transition matrix from the basis S to the standard coords to coords

$$
\mathbf{v}=P[\mathbf{v}]_{S} \quad[\mathbf{v}]_{S}=P^{-1} \mathbf{v}
$$

- Using $A \mathbf{v}=\lambda \mathbf{v}$:

$$
\begin{aligned}
B[\mathbf{v}]_{S} & =P^{-1} A P[\mathbf{v}]_{S} \\
& =P^{-1} A \mathbf{v} \\
& =P^{-1} \lambda \mathbf{v} \\
& =\lambda P^{-1} \mathbf{v} \\
& =\lambda[\mathbf{v}]_{S}
\end{aligned}
$$

hence $[\mathbf{v}]_{S}$ is eigenvector of B corresponding to eigenvalue λ

Diagonalizable matrices

Example

$$
A=\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]
$$

has characteristic polynomial $\lambda^{2}-6 \lambda+9=(\lambda-3)^{2}$.
The eigenvectors are:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \mathbf{v}=[-1,1]^{T}
\end{aligned}
$$

hence any two eigenvectors are scalar multiple of each others and are linearly dependent.

The matrix A is therefore not diagonalizable.

Example

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

has characteristic equation $\lambda^{2}+1$ and hence it has no real eigenvalues.

Theorem

If an $n \times n$ matrix A has n different eigenvalues then (it has a set of n linearly independent eigenvectors) is diagonalizable.

- Proof by contradiction
- n lin indep. is necessary condition but n different eigenvalues not.

Example

$$
A=\left[\begin{array}{ccc}
3 & -1 & 1 \\
0 & 2 & 0 \\
1 & -1 & 3
\end{array}\right]
$$

the characteristic polynomial is $-(\lambda-2)^{2}(\lambda-4)$. Hence 2 has multiplicity 2 . Can we find two corresponding linearly independent vectors?

Example (cntd)

$$
\begin{aligned}
& (A-2 I)=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
1 & -1 & 1
\end{array}\right] \rightarrow \stackrel{\text { RREF }}{\cdots} \rightarrow\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \mathbf{x}=s\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=s \mathbf{v}_{1}+t \mathbf{v}_{2} \quad s, t \in \mathbb{R}
\end{aligned}
$$

the two vectors are lin. indep.

$$
\begin{aligned}
& (A-4 I)=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
0 & -2 & 0 \\
1 & -1 & -1
\end{array}\right] \rightarrow \stackrel{\text { RREF }}{\cdots} \rightarrow\left[\begin{array}{llc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \quad P^{-1} A P=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

Example

$$
A=\left[\begin{array}{ccc}
-3 & -1 & -2 \\
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Eigenvalue $\lambda_{1}=-1$ has multiplicity 2; $\lambda_{2}=-2$.

$$
(A+I)=\left[\begin{array}{ccc}
-2 & -1 & -2 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] \rightarrow \stackrel{\text { RREF }}{\cdots} \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The rank is 2.
The null space $(A+I)$ therefore has dimension 1 (rank-nullity theorem). We find only one linearly independent vector: $\mathbf{x}=[-1,0,1]^{\top}$. Hence the matrix A cannot be diagonalized.

Multiplicity

Definition (Algebraic and geometric multiplicity)
An eigenvalue λ_{0} of a matrix A has

- algebraic multiplicity k if k is the largest integer such that $\left(\lambda-\lambda_{0}\right)^{k}$ is a factor of the characteristic polynomial
- geometric multiplicity k if k is the dimension of the eigenspace of λ_{0}, ie, $\operatorname{dim}\left(N\left(A-\lambda_{0} I\right)\right)$

Theorem

For any eigenvalue of a square matrix, the geometric multiplicity is no more than the algebraic multiplicity

Theorem

A matrix is diagonalizable if and only if all its eigenvalues are real numbers and, for each eigenvalue, its geometric multiplicity equals the algebraic multiplicity.

Summary

- Characteristic polynomial and characteristic equation of a matrix
- eigenvalues, eigenvectors, diagonalization
- finding eigenvalues and eigenvectors
- eigenspace
- eigenvalues are related to determinant and trace of a matrix
- diagonalize a diagonalizable matrix
- conditions for digonalizability
- diagonalization as a change of basis, similarity
- geometric effect of linear transformation via diagonalization

Outline

1. More on Coordinate Change
2. Diagonalization
3. Applications

Uses of Diagonalization

- find powers of matrices
- solving systems of simultaneous linear difference equations
- Markov chains
- systems of differential equations

Powers of Matrices

$$
A^{n}=\underbrace{A A A \cdots A}_{n \text { times }}
$$

If we can write: $P^{-1} A P=D$ then $A=P D P^{-1}$

$$
\begin{aligned}
A^{n} & =\underbrace{A A A \cdots A}_{n \text { times }} \\
& =\underbrace{\left(P D P^{-1}\right)\left(P D P^{-1}\right)\left(P D P^{-1}\right) \cdots\left(P D P^{-1}\right)} \\
& =P D\left(P^{-1} P\right) D\left(P^{-1} P\right) D\left(P^{-1} P\right) \cdots D P^{-1} \\
& =P \underbrace{D D D \cdots D}_{n} P^{-1} \\
& =P D^{n} P^{-1}-1
\end{aligned}
$$

then closed formula to calculate the power of a matrix.

Difference equations

- A difference equation is an equation linking terms of a sequence to previous terms, eg:

$$
x_{t+1}=5 x_{t}-1
$$

is a first order difference equation.

- a first order difference equation can be fully determined if we know the first term of the sequence (initial condition)
- a solution is an expression of the terms x_{t}

$$
x_{t+1}=a x_{t} \Longrightarrow x_{t}=a^{t} x_{0}
$$

System of Difference equations

Suppose the sequences x_{t} and y_{t} are related as follows:

$$
\begin{aligned}
x_{0}=1, y_{0} & =1 \text { for } t \geq 0 \\
x_{t+1} & =7 x_{t}-15 y_{t} \\
y_{t+1} & =2 x_{t}-4 y_{t}
\end{aligned}
$$

Coupled system of difference equations.

Let

$$
\text { then } \mathrm{x}_{t+1}=A \mathrm{x}_{t} \text { and } 0=[1,1]^{T} \text { and }
$$

$$
\mathbf{x}_{t}=\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
7 & -15 \\
2 & -4
\end{array}\right]
$$

Then:

$$
\begin{aligned}
\mathbf{x}_{1} & =A \mathbf{x}_{0} \\
\mathbf{x}_{2} & =A \mathbf{x}_{1}=A\left(A \mathbf{x}_{0}\right)=A^{2} \mathbf{x}_{0} \\
\mathbf{x}_{3} & =A \mathbf{x}_{2}=A\left(A^{2} \mathbf{x}_{0}\right)=A^{3} \mathbf{x}_{0} \\
\vdots & \\
\mathbf{x}_{t} & =A^{t} \mathbf{x}_{0}
\end{aligned}
$$

Markov Chains

- Suppose two supermarkets compete for customers in a region with 20000 shoppers.
- Assume no shopper goes to both supermarkets in a week.
- The table gives the probability that a shopper will change from one to another supermarket:

From A From B From none

To A	0.70	0.15	0.30
To B	0.20	0.80	0.20
To none	0.10	0.05	0.50

(note that probabilities in the columns add up to 1)

- Suppose that at the end of week 0 it is known that 10000 went to A, 8000 to B and 2000 to none.
- Can we predict the number of shoppers at each supermarket in any future week t ? And the long-term distribution?

Formulation as a system of difference equations:

- Let x_{t} be the percentage of shoppers going in the two supermarkets or none
- then we have the difference equation:

$$
\begin{aligned}
\mathbf{x}_{t} & =A \mathbf{x}_{t-1} \\
A & =\left[\begin{array}{lll}
0.70 & 0.15 & 0.30 \\
0.20 & 0.80 & 0.20 \\
0.10 & 0.05 & 0.50
\end{array}\right], \quad \mathbf{x}_{t}=\left[\begin{array}{lll}
x_{t} & y_{t} & z_{t}
\end{array}\right]
\end{aligned}
$$

- a Markov chain (or process) is a closed system of a fixed population distributed into n diffrerent states, transitioning between the states during specific time intervals.
- The transition probabilities are known in a transition matrix A (coefficients all non-negative + sum of entries in the columns is 1)
- state vector x_{t}, entries sum to 1 .
- A solution is given by (assuming A is diagonalizable):

$$
\mathbf{x}_{t}=A^{t} \mathbf{x}_{0}=\left(P D^{t} P^{-1}\right) \mathbf{x}_{0}
$$

- let $\mathbf{x}_{0}=P \mathbf{z}_{0}$ and $\mathbf{z}_{0}=P^{-1} \mathbf{x}_{0}=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{T}$ be the representation of x_{0} in the basis of eigenvectors, then:

$$
\mathbf{x}_{t}=P D^{t} P^{-1} \mathbf{x}_{0}=b_{1} \lambda_{1}^{t} \mathbf{v}_{1}+b_{2} \lambda_{2}^{t} \mathbf{v}_{2}+\cdots+b_{n} \lambda_{n}^{t} \mathbf{v}_{n}
$$

- $\mathbf{x}_{t}=b_{1}(1)^{t} \mathbf{v}_{1}+b_{2}(0.6)^{t} \mathbf{v}_{2}+\cdots+b_{n}(0.4)^{t} \mathbf{v}_{n}$
- $\lim _{t \rightarrow \infty} 1^{t}=1, \quad \lim _{t \rightarrow \infty} 0.6^{t}=0$ hence the long-term distribution is

$$
\mathbf{q}=b_{1} \mathbf{v}_{1}=0.125\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{l}
0.375 \\
0.500 \\
0.125
\end{array}\right]
$$

- Th.: if A is the transition matrix of a regular Markov chain, then $\lambda=1$ is an eigenvalue of multiplicity 1 and all other eigenvalues satisfy $|\lambda|<1$

