
DM811 – Autumn 2013

Heuristics for Combinatorial Optimization

Lecture 1
Course Introduction

Combinatorial Optimization and Modeling

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Exercise

4. Problem Solving

2

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Exercise

4. Problem Solving

3

Schedule and Material

Class schedule:
Monday 08:15-10:00
Tuesday 14:15-18:00
Last class: Tuesday, October 11, 2012

Intro phase (Introfase) 12 classes Skills training phase (Træningsfase) 10
timer Study phase: (Studiefase)

Communication tools
Course Public Webpage (WWW) ⇔ BlackBoard (BB)
(link from http://www.imada.sdu.dk/~marco/DM811/)
Announcements in BlackBoard
Course Documents (for photocopies) in (BB)
Discussion Board (anonymous) in (BB)
Personal email

4

http://www.imada.sdu.dk/~marco/DM811/

Contents

Heuristic algorithms: compute, efficiently, good solutions to a problem with
no guarantee of optimality.

5

Evaluation

Obligatory Assignments, pass/fail, evaluation by teacher (1+3 handins)
Work in pairs, submit individually
 Feedback

Evaluation: final individual project, 7-grade scale, external examiner)
 NEW: Based on the obligatory assignments

Algorithm design
Implementation (deliverable and checkable source code)
(Analytical) and experimental analysis
Written description
Performance counts!

6

References

Main References:

B1 W. Michiels, E. Aarts and J. Korst. Theoretical Aspects of Local Search.
Springer Berlin Heidelberg, 2007

B2 S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
(Part II, chp. 3,4,6). Third Edition. Prentice Hall, 2010.

B4 P.V. Hentenryck and L. Michel. Constraint-Based Local Search. The
MIT Press, Cambridge, USA, 2005. (In BlackBoard)

B5 H. Hoos and T. Stuetzle, Stochastic Local Search: Foundations and
Applications, 2005, Morgan Kaufmann
https://class.coursera.org/optimization-001

Literature Collection (from Course Documents left menu of BlackBoard)
R notes from the Webpage
Lecture slides
Assignments
Examples and Exercises (take notes in class)

7

https://class.coursera.org/optimization-001

Active participation

Practical experience is important to learn to develop heuristics
Implementation details play an important role.

Be prepared for:

Problem solving in class

Assignments for hands on experience programming

Experimental analysis of performance

Group discussions

Exercise Sheets

Required study phase (= work outside the classes)

8

Former students’ feedback (1/2)

On the course:

the course bulids on a lot of knowledge from previous courses

programming

practical drive

taught on examples

no sharp rules are given and hence more space left to creativity

unexpected heavy workload

the assignments are really an important preparation to the final projects

10

Word cloud

11

Former students’ feedback (2/2)

On the exam:

hardest part is the design of the heuristics
the content of the course is vast many possibilities without clue on
what will work best.

In general:

Examples are relevant, would be nice closer look at source code.

From my side, mistakes I would like to see avoided:

non competitive local search procedures

bad descriptions

mistaken data aggregation in instance set analysis.

12

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Exercise

4. Problem Solving

13

Combinatorial Problems (1/6)

Combinatorial problems

They arise in many areas
of Computer Science, Artificial Intelligence and Operations Research:

allocating register memory
planning, scheduling, timetabling
Internet data packet routing
protein structure prediction
auction winner determination
portfolio selection
...

15

Combinatorial Problems (2/6)

Simplified models are often used to formalize real life problems

coloring graphs (GCP)
finding models of propositional formulae (SAT)
finding variable assignment that satisfy constraints (CSP)
finding shortest/cheapest round trips (TSP)
partitioning graphs or digraphs
partitioning, packing, covering sets
finding the order of arcs with minimal backward cost
...

16

Example Problems

They are chosen because conceptually concise, intended to illustrate the
development, analysis and presentation of algorithms

Although real-world problems tend to have much more complex
formulations, these problems capture their essence

17

Combinatorial Problems (3/6)

Combinatorial problems are characterized by an input,
i.e., a general description of conditions (or constraints) and parameters,
and a question (or task, or objective) defining
the properties of a solution.

They involve finding a grouping, ordering, or assignment
of a discrete, finite set of objects that satisfies given conditions.

Note:
in this course, (candidate) solutions are combinations of objects or solution
components that need not satisfy all given conditions.

Solutions are candidate solutions that satisfy all given conditions.

18

Combinatorial Problems (4/6)
Examples

Grouping:

Given a finite set N = {1, . . . , n}, weights cj for each j ∈ N , and a set F of
feasible subsets of N , find a minimum weight feasible subset of N , ie,

min
S⊆N
{
∑
j∈S

cj | S ∈ F}

candidate solution: one of the 2|N | possible subsets of N .
solution: the feasible subset of minimal cost

19

Combinatorial Problems (5/6)
Ordering

Ordering:

Traveling Salesman Problem

Given: edge-weighted, undirected complete graph G
Task: find a minimum-weight Hamiltonian cycle in G.

candidate solution: one of the (n− 1)! possible sequences of points to
visit one directly after the other.
solution: Hamiltonian cycle of minimal length

20

Decision problems

Hamiltonian cycle problem

Given: undirected graph G
Question: does G contain a Hamiltonian cycle?

solutions = candidate solutions that satisfy given logical conditions

Two variants:
Existence variant: Determine whether solutions
for given problem instance exist
Search variant: Find a solution for given problem instance
(or determine that no solution exists)

21

Optimization problems

Traveling Salesman Problem

Given: edge-weighted, undirected complete graph G
Task: find a minimum-weight Hamiltonian cycle in G.

objective function measures solution quality
(often defined on all candidate solutions)
find solution with optimal quality, i.e., minimize/maximize obj. func.

Variants of optimization problems:

Evaluation variant: Determine optimal objective function
value for given problem instance
Search variant: Find a solution with optimal
objective function value for given problem instance

22

Remarks

Every optimization problem has an associated decision problem:
Given a problem instance and a fixed solution quality bound b,
find a solution with objective function value ≤ b (for minimization
problems) or determine that no such solution exists.

Many optimization problems have an objective function
as well as constraints (= logical conditions) that solutions must satisfy.

A candidate solution is called feasible (or valid) iff it satisfies
the given constraints.

Approximate solutions are feasible candidate solutions that are not
optimal.

Note: Logical conditions can always be captured by
an objective function such that feasible candidate solutions
correspond to solutions of an associated decision problem
with a specific bound.

23

Combinatorial Problems (6/6)

General problem vs problem instance:

General problem Π:
Given any set of points X in a square, find a shortest Hamiltonian cycle
Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π = Π(I):
Given a specific set of points I in the square, find a shortest Hamiltonian
cycle
Solution: Shortest Hamiltonian cycle for I

Problems can be formalized on sets of problem instances I (instance classes)

24

Traveling Salesman Problem

Types of TSP instances:

Symmetric: For all edges uv of the given graph G, vu is also in G, and
w(uv) = w(vu).
Otherwise: asymmetric.
Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.
Geographic: Vertices = points on a sphere,
weight function = geographic (great circle) distance.

25

TSP: Benchmark Instances

Instance classes
Real-life applications (geographic, VLSI)
Random Euclidean
Random Clustered Euclidean
Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge

26

TSP: Instance Examples

27

Methods and Algorithms

A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithm (or algorithmic model) is a problem-specific template that
leaves only some practical details unspecified.
The level of detail may vary:

minimally instantiated (few details, algorithm template)
lowly instantiated (which data structure to use)
highly instantiated (programming tricks that give speedups)
maximally instantiated (details specific of a programming language and
computer architecture)

A Program is the formulation of an algorithm in a programming language.

An algorithm can thus be regarded as a class of computer programs
(its implementations)

29

Solution Methods

Exact methods (complete)
guaranteed to find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

Search algorithms (backtracking, branch and bound)
Dynamic programming
Constraint programming
Integer programming
Dedicated Algorithms (eg, branch and bound)

Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/~viggo/problemlist/compendium.html

Heuristic (Approximate) methods (incomplete)
not guaranteed to find (optimal) solution,
and unable to prove that no solution exists

30

http://www.nada.kth.se/~viggo/problemlist/compendium.html

Problem specific methods:

Dynamic programming (knapsack)

Dedicated algorithms (shortest path)

General methods:

Integer Programming

Constraint Programming

Generic methods:
U Allow to save development time
D Do not achieve same performance as specific algorithms

31

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Exercise

4. Problem Solving

32

The Vertex Coloring Problem

Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most k
colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

34

Exercise

Map coloring:

35

Timetabling as a graph coloring problem

Definition
Find an assignment of lectures to time slots and rooms which is

Feasible

rooms are only used by one lecture at a time,
each lecture is assigned to a suitable room,
no student has to attend more than one lecture at once,
lectures are assigned only time slots where they are available;

Hard
Constraints

and Good

no more than two lectures in a row for a student,
unpopular time slots avoided (last in a day),
students do not have one single lecture in a day.

 Soft
Constraints

36

A look at the instances

These are large scale instances.

37

A look at the basic Graph Model (vertices correspond to lectures)

38

Exercise

N -Queens problem

Input: A chessboard of size N ×N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

39

Exercise

N2 Queens
Input: A chessboard of size N ×N

Question: Given such a chessboard, is
it possible to place N sets of N
queens on the board so that no two
queens of the same set are in the same
row, column, or diagonal?

The answer is yes ⇐⇒ a corresponding conflict graph admits a coloring
with N colors

40

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Exercise

4. Problem Solving

42

Heuristics
Get inspired by approach to problem solving in human mind
[A. Newell and H.A. Simon. “Computer science as empirical inquiry: symbols and
search.” Communications of the ACM, ACM, 1976, 19(3)]

effective rules

trial and error

Applications:

Optimization, Timetabling, Routing, Scheduling
But also in Psychology, Economics, Management [Tversky, A.; Kahneman,
D. (1974). "Judgment under uncertainty: Heuristics and biases". Science 185]

Basis on empirical evidence rather than mathematical logic. Getting things
done in the given time.

43

The Mathematical Perspective

Beside psychologists, also mathematicians reflected upon problem solving
processes:

George Pólya, How to Solve it, 1945

J. Hadamard, The Mathematician’s Mind - The Psychology of Invention
in the Mathematical Field, 1945

44

Mathematical Problem Solving
George Pólya

George Pólya’s 1945 book How to Solve It:

1. Understand the problem.
2. Make a plan.
3. Carry out the plan.
4. Look back on your work. How could it be better?

http://en.wikipedia.org/wiki/How_to_Solve_It

45

http://en.wikipedia.org/wiki/How_to_Solve_It

Pólya’s First Principle: Understand the Problem

Do you understand all the words used in stating the problem?
What are you asked to find or show?
Is there enough information to enable you to find a solution?
Can you restate the problem in your own words?
Can you think of a picture or a diagram that might help you to
understand the problem?

46

Pólya’s Second Principle: Devise a plan

There are many reasonable ways to solve problems.

Guess and check
Make an orderly list
Eliminate possibilities
Use symmetry
Consider special cases
Use direct reasoning

Also suggested:

Look for a pattern
Draw a picture
Solve a simpler problem
Use a model
Work backward

Choosing an appropriate strategy is best learned by solving many problems.

47

Pólya’s Third Principle: Carry out the plan

“Needed is care and patience, given that you have the necessary
skills. Persist with the plan that you have chosen. If it continues
not to work discard it and choose another. Don’t be misled, this is
how mathematics is done, even by professionals.”

Pólya’s Fourth Principle: Review/Extend

“Much can be gained by taking the time to reflect and look back at
what you have done, what worked and what didn’t. Doing this will
enable you to predict what strategy to use to solve future problems.”

48

Inspiration can strike anytime, particularly after an individual
had worked hard on a problem for days and then turned the
attention to another activity.

The Mathematician’s Mind - The Psychology of Invention in the
Mathematical Field, J. Hadamard, 1945

50

Summary

1. Course Introduction

2. Combinatorial Optimization

Combinatorial Problems, Terminology
Solution Methods, Overview
Travelling Salesman Problem

3. Problem Solving

Example: Graph Coloring Problem
Polya’s view about Problem Solving

4. Basic Concepts from Algorithmics
(Review slides and Cormen, Leiserson, Rivest and Stein. Introduction to
algorithms. 2001)

51

	Course Introduction
	Combinatorial Optimization
	Combinatorial Problems
	Solution Methods

	Exercise
	Problem Solving

