DM811

Heuristics for Combinatorial Optimization

Neighborhoods and Landscapes

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Computational Complexity
2. Search Space Properties

Introduction
Neighborhoods Formalized Distances
Landscape Characteristics

Outline

1. Computational Complexity
2. Search Space Properties

Introduction
Neighborhoods Formalized
Distances
Landscape Characteristics

Computational Complexity of LS

For a local search algorithm to be effective, search initialization and individual search steps should be efficiently computable.

Complexity class $\mathcal{P L S}$: class of problems for which a local search algorithm exists with polynomial time complexity for:

- search initialization
- any single search step, including computation of evaluation function value

For any problem in $\mathcal{P} \mathcal{L S} \ldots$

- local optimality can be verified in polynomial time
- improving search steps can be computed in polynomial time
- but: finding local optima may require super-polynomial time

Computational Complexity of LS

$\mathcal{P} \mathcal{L S}$-complete: Among the most difficult problems in $\mathcal{P L S}$; if for any of these problems local optima can be found in polynomial time, the same would hold for all problems in $\mathcal{P L S}$.

Some complexity results:

- TSP with k-exchange neighborhood with $k>3$ is $\mathcal{P L S}$-complete.
- TSP with 2- or 3-exchange neighborhood is in $\mathcal{P L S}$, but $\mathcal{P} \mathcal{L S}$-completeness is unknown.

Outline

1. Computational Complexity
2. Search Space Properties

Introduction
Neighborhoods Formalized Distances
Landscape Characteristics

Definitions

- Problem instance π
- Search space S_{π}
- Neighborhood function $\mathcal{N}: S \subseteq 2^{S}$
- Evaluation function $f_{\pi}: S \rightarrow \mathbf{R}$

Definition:
The search landscape L is the vertex-labeled neighborhood graph given by the triplet $\mathcal{L}=\left\langle S_{\pi}, N_{\pi}, f_{\pi}\right\rangle$.

Search Landscape

Transition Graph of Iterative Improvement Given $\mathcal{L}=\left\langle S_{\pi}, N_{\pi}, f_{\pi}\right\rangle$, the transition graph of iterative improvement is a directed acyclic subgraph obtained from \mathcal{L} by deleting all arcs (i, j) for which it holds that the cost of solution j is worse than or equal to the cost of solution i.

It can be defined for other algorithms as well and it plays a central role in the theoretical analysis of proofs of convergence.

Ideal visualization of landscapes principles

- Simplified landscape representation

Search space

- Iterated Local Search

- Tabu Search

Search space

- Evolutionary Alg.

Search space

- Guided Local Search

Search space

Fundamental Properties

The behavior and performance of an LS algorithm on a given problem instance crucially depends on properties of the respective search landscape.

Simple properties:

- search space size $|S|$
- reachability: solution j is reachable from solution i if neighborhood graph has a path from i to j.
- strongly connected neighborhood graph
- weakly optimally connected neighborhood graph
- distance between solutions
- neighborhood size (ie, degree of vertices in neigh. graph)
- cost of fully examining the neighborhood
- relation between different neighborhood functions (if $N_{1}(s) \subseteq N_{2}(s)$ forall $s \in S$ then \mathcal{N}_{2} dominates \mathcal{N}_{1})

Neighborhood Operator

Goal: providing a formal description of neighborhood functions for the three main solution representations:

- Permutation
- linear permutation: Single Machine Total Weighted Tardiness Problem
- circular permutation: Traveling Salesman Problem
- Assignment: SAT, CSP
- Set, Partition: Max Independent Set

A neighborhood function $\mathcal{N}: S \rightarrow 2^{S}$ is also defined through an operator. An operator Δ is a collection of operator functions $\delta: S \rightarrow S$ such that

$$
s^{\prime} \in N(s) \quad \Longleftrightarrow \quad \exists \delta \in \Delta \mid \delta(s)=s^{\prime}
$$

Permutations

$\Pi(n)$ indicates the set all permutations of the numbers $\{1,2, \ldots, n\}$
$(1,2 \ldots, n)$ is the identity permutation ι.
If $\pi \in \Pi(n)$ and $1 \leq i \leq n$ then:

- π_{i} is the element at position i
- $\operatorname{pos}_{\pi}(i)$ is the position of element i

Alternatively, a permutation is a bijective function $\pi(i)=\pi_{i}$
The permutation product $\pi \cdot \pi^{\prime}$ is the composition $\left(\pi \cdot \pi^{\prime}\right)_{i}=\pi^{\prime}(\pi(i))$
For each π there exists a permutation such that $\pi^{-1} \cdot \pi=\iota$
$\pi^{-1}(i)=\operatorname{pos}_{\pi}(i)$

$$
\Delta_{N} \subset \Pi
$$

Linear Permutations

Swap operator

$$
\begin{gathered}
\Delta_{S}=\left\{\delta_{S}^{i} \mid 1 \leq i \leq n\right\} \\
\delta_{S}^{i}\left(\pi_{1} \ldots \pi_{i} \pi_{i+1} \ldots \pi_{n}\right)=\left(\pi_{1} \ldots \pi_{i+1} \pi_{i} \ldots \pi_{n}\right)
\end{gathered}
$$

Interchange operator

$$
\begin{gathered}
\Delta_{X}=\left\{\delta_{X}^{i j} \mid 1 \leq i<j \leq n\right\} \\
\delta_{X}^{i j}(\pi)=\left(\pi_{1} \ldots \pi_{i-1} \pi_{j} \pi_{i+1} \ldots \pi_{j-1} \pi_{i} \pi_{j+1} \ldots \pi_{n}\right)
\end{gathered}
$$

(\equiv set of all transpositions)
Insert operator

$$
\begin{gathered}
\Delta_{I}=\left\{\delta_{I}^{i j} \mid 1 \leq i \leq n, 1 \leq j \leq n, j \neq i\right\} \\
\delta_{I}^{i j}(\pi)= \begin{cases}\left(\pi_{1} \ldots \pi_{i-1} \pi_{i+1} \ldots \pi_{j} \pi_{i} \pi_{j+1} \ldots \pi_{n}\right) & i<j \\
\left(\pi_{1} \ldots \pi_{j} \pi_{i} \pi_{j+1} \ldots \pi_{i-1} \pi_{i+1} \ldots \pi_{n}\right) & i>j\end{cases}
\end{gathered}
$$

Circular Permutations

Reversal (2-edge-exchange)

$$
\begin{gathered}
\Delta_{R}=\left\{\delta_{R}^{i j} \mid 1 \leq i<j \leq n\right\} \\
\delta_{R}^{i j}(\pi)=\left(\pi_{1} \ldots \pi_{i-1} \pi_{j} \ldots \pi_{i} \pi_{j+1} \ldots \pi_{n}\right)
\end{gathered}
$$

Block moves (3-edge-exchange)

$$
\begin{gathered}
\Delta_{B}=\left\{\delta_{B}^{i j k} \mid 1 \leq i<j<k \leq n\right\} \\
\delta_{B}^{i j}(\pi)=\left(\pi_{1} \ldots \pi_{i-1} \pi_{j} \ldots \pi_{k} \pi_{i} \ldots \pi_{j-1} \pi_{k+1} \ldots \pi_{n}\right)
\end{gathered}
$$

Short block move (Or-edge-exchange)

$$
\begin{gathered}
\Delta_{S B}=\left\{\delta_{S B}^{i j} \mid 1 \leq i<j \leq n\right\} \\
\delta_{S B}^{i j}(\pi)=\left(\pi_{1} \ldots \pi_{i-1} \pi_{j} \pi_{j+1} \pi_{j+2} \pi_{i} \ldots \pi_{j-1} \pi_{j+3} \ldots \pi_{n}\right)
\end{gathered}
$$

Assignments

An assignment can be represented as a mapping $\sigma:\left\{X_{1} \ldots X_{n}\right\} \rightarrow\{v: v \in D,|D|=k\}:$

$$
\sigma=\left\{X_{i}=v_{i}, X_{j}=v_{j}, \ldots\right\}
$$

One-exchange operator

$$
\begin{gathered}
\Delta_{1 E}=\left\{\delta_{1 E}^{i l} \mid 1 \leq i \leq n, 1 \leq l \leq k\right\} \\
\delta_{1 E}^{i l}(\sigma)=\left\{\sigma^{\prime}: \sigma^{\prime}\left(X_{i}\right)=v_{l} \text { and } \sigma^{\prime}\left(X_{j}\right)=\sigma\left(X_{j}\right) \forall j \neq i\right\}
\end{gathered}
$$

Two-exchange operator

$$
\Delta_{2 E}=\left\{\delta_{2 E}^{i j} \mid 1 \leq i<j \leq n\right\}
$$

$\delta_{2 E}^{i j}(\sigma)=\left\{\sigma^{\prime}: \sigma^{\prime}\left(X_{i}\right)=\sigma\left(X_{j}\right), \sigma^{\prime}\left(X_{j}\right)=\sigma\left(X_{i}\right)\right.$ and $\left.\sigma^{\prime}\left(X_{l}\right)=\sigma\left(X_{l}\right) \forall l \neq i, j\right\}$

Partitioning

An assignment can be represented as a partition of objects selected and not selected $s:\{X\} \rightarrow\{C, \bar{C}\}$
(it can also be represented by a bit string)
One-addition operator

$$
\begin{gathered}
\Delta_{1 E}=\left\{\delta_{1 E}^{v} \mid v \in \bar{C}\right\} \\
\delta_{1 E}^{v}(s)=\left\{s: C^{\prime}=C \cup v \text { and } \bar{C}^{\prime}=\bar{C} \backslash v\right\}
\end{gathered}
$$

One-deletion operator

$$
\begin{gathered}
\Delta_{1 E}=\left\{\delta_{1 E}^{v} \mid v \in C\right\} \\
\delta_{1 E}^{v}(s)=\left\{s: C^{\prime}=C \backslash v \text { and } \bar{C}^{\prime}=\bar{C} \cup v\right\}
\end{gathered}
$$

Swap operator

$$
\begin{gathered}
\Delta_{1 E}=\left\{\delta_{1 E}^{v} \mid v \in C, u \in \bar{C}\right\} \\
\delta_{1 E}^{v}(s)=\left\{s: C^{\prime}=C \cup u \backslash v \text { and } \bar{C}^{\prime}=\bar{C} \cup v \backslash u\right\}
\end{gathered}
$$

Distances

Set of paths in \mathcal{L} with $s, s^{\prime} \in S$:
$\Phi\left(s, s^{\prime}\right)=\left\{\left(s_{1}, \ldots, s_{h}\right) \mid s_{1}=s, s_{h}=s^{\prime} \forall i: 1 \leq i \leq h-1,\left\langle s_{i}, s_{i+1}\right\rangle \in E_{\mathcal{L}}\right\}$

If $\phi=\left(s_{1}, \ldots, s_{h}\right) \in \Phi\left(s, s^{\prime}\right)$ let $|\phi|=h$ be the length of the path; then the distance between any two solutions s, s^{\prime} is the length of shortest path between s and s^{\prime} in \mathcal{L} :

$$
d_{\mathcal{N}}\left(s, s^{\prime}\right)=\min _{\phi \in \Phi\left(s, s^{\prime}\right)}|\Phi|
$$

$\operatorname{diam}(\mathcal{L})=\max \left\{d_{\mathcal{N}}\left(s, s^{\prime}\right) \mid s, s^{\prime} \in S\right\}$ (= maximal distance between any two candidate solutions)
(= worst-case lower bound for number of search steps required for reaching (optimal) solutions)

Note: with permutations it is easy to see that:

$$
d_{\mathcal{N}}\left(\pi, \pi^{\prime}\right)=d_{\mathcal{N}}\left(\pi^{-1} \cdot \pi^{\prime}, \iota\right)
$$

Distances for Linear Permutation Representations

- Swap neighborhood operator computable in $O\left(n^{2}\right)$ by the precedence based distance metric: $d_{S}\left(\pi, \pi^{\prime}\right)=\#\left\{\langle i, j\rangle \mid 1 \leq i<j \leq n, \operatorname{pos}_{\pi^{\prime}}\left(\pi_{j}\right)<\operatorname{pos}_{\pi^{\prime}}\left(\pi_{i}\right)\right\}$. $\operatorname{diam}\left(G_{\mathcal{N}}\right)=n(n-1) / 2$
- Interchange neighborhood operator

Computable in $O(n)+O(n)$ since $d_{X}\left(\pi, \pi^{\prime}\right)=d_{X}\left(\pi^{-1} \cdot \pi^{\prime}, \iota\right)=n-c\left(\pi^{-1} \cdot \pi^{\prime}\right)$
$c(\pi)$ is the number of disjoint cycles that decompose a permutation.
$\operatorname{diam}\left(G_{\mathcal{N}_{X}}\right)=n-1$

- Insert neighborhood operator

Computable in $O(n)+O(n \log (n))$ since $d_{I}\left(\pi, \pi^{\prime}\right)=d_{I}\left(\pi^{-1} \cdot \pi^{\prime}, \iota\right)=n-\left|\operatorname{lis}\left(\pi^{-1} \cdot \pi^{\prime}\right)\right|$ where $\operatorname{lis}(\pi)$ denotes the length of the longest increasing subsequence.

```
diam(G}\mp@subsup{G}{\mp@subsup{\mathcal{N}}{I}{}}{})=n-
```


Distances for Circular Permutation Representations

- Reversal neighborhood operator sorting by reversal is known to be NP-hard surrogate in TSP: bond distance
- Block moves neighborhood operator unknown whether it is NP-hard but there does not exist a proved polynomial-time algorithm

Distances for Assignment Representations

- Hamming Distance
- An assignment can be seen as a partition of n in k mutually exclusive non-empty subsets
One-exchange neighborhood operator The partition-distance $d_{1 E}\left(\mathcal{P}, \mathcal{P}^{\prime}\right)$ between two partitions \mathcal{P} and \mathcal{P}^{\prime} is the minimum number of elements that must be moved between subsets in \mathcal{P} so that the resulting partition equals \mathcal{P}^{\prime}.

The partition-distance can be computed in polynomial time by solving an assignment problem. Given the assignment matrix M where in each cell (i, j) it is $\left|S_{i} \cap S_{j}^{\prime}\right|$ with $S_{i} \in \mathcal{P}$ and $S_{j}^{\prime} \in \mathcal{P}^{\prime}$ and defined $A\left(\mathcal{P}, \mathcal{P}^{\prime}\right)$ the assignment of maximal sum then it is $d_{1 E}\left(\mathcal{P}, \mathcal{P}^{\prime}\right)=n-A\left(\mathcal{P}, \mathcal{P}^{\prime}\right)$

Example: Search space size and diameter for the TSP

- Search space size $=(n-1)!/ 2$
- Insert neighborhood
size $=(n-3) n$
diameter $=n-2$
- 2-exchange neighborhood size $=\binom{n}{2}=n \cdot(n-1) / 2$ diameter in $[n / 2, n-2]$
- 3-exchange neighborhood size $=\binom{n}{3}=n \cdot(n-1) \cdot(n-2) / 6$ diameter in $[n / 3, n-1]$

Example: Search space size and diameter for SAT
SAT instance with n variables, 1-flip neighborhood:
$G_{\mathcal{N}}=n$-dimensional hypercube; diameter of $G_{\mathcal{N}}=n$.

Let \mathcal{N}_{1} and \mathcal{N}_{2} be two different neighborhood functions for the same instance (S, f, π) of a combinatorial optimization problem. If for all solutions $s \in S$ we have $N_{1}(s) \subseteq N_{2}(s)$ then we say that \mathcal{N}_{2} dominates \mathcal{N}_{1}

Example:
In TSP, 1-insert is dominated by 3 -exchange.
(1-insert corresponds to 3 -exchange and there are 3 -exchanges that are not 1-insert)

Other Search Space Properties

- number of (optimal) solutions $\left|S^{\prime}\right|$, solution density $\left|S^{\prime}\right| /|S|$
- distribution of solutions within the neighborhood graph

Phase Transition for 3-SAT

Random instances $\rightsquigarrow m$ clauses of n uniformly chosen variables

Classification of search positions

position type	$>$	$=$	$<$
SLMIN (strict local min)	+	-	-
LMIN (local min)	+	+	-
IPLAT (interior plateau)	-	+	-
SLOPE	+	-	+
LEDGE	+	+	+
LMAX (local max)	-	+	+
SLMAX (strict local max)	-	-	+

" + " $=$ present, " - " absent; table entries refer to neighbors with larger (">"), equal (" $=$ "), and smaller (" $<$ ") evaluation function values

Other Search Space Properties

- plateux
- barrier and basins

