DM811

Heuristics for Combinatorial Optimization

Efficient Local Search

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Course Overview

- Combinatorial Optimization, Methods and Models
- CH and LS: overview
- ✓ Working Environment and Solver Systems
- Methods for the Analysis of Experimental Results
- Construction Heuristics
- ✓ Local Search: Components, Basic Algorithms
 - Efficient Local Search: Incremental Updates and Neighborhood Pruning
 - Local Search: Neighborhoods and Search Landscape
 - Stochastic Local Search & Metaheuristics
 - Configuration Tools: F-race
 - Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, Unrelated Parallel Machines, p-median, set covering, QAP, ...

Efficient Local Search Examples

Outline

1. Efficient Local Search

2. Examples

SAT

TSP

SMTWTP

Efficient Local Search Examples

Outline

1. Efficient Local Search

2. Examples
SAT
TSP
SMTWTF

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

For given problem instance π :

- 1. search space S_{π}
- 2. evaluation function $f_{\pi}: S \to \mathbf{R}$
- 3. neighborhood relation $\mathcal{N}_{\pi} \subseteq S_{\pi} \times S_{\pi}$
- 4. set of memory states M_π
- 5. initialization function init : $\emptyset \to S_{\pi} \times M_{\pi}$)
- 6. step function step : $S_{\pi} \times M_{\pi} \to S_{\pi} \times M_{\pi}$
- 7. termination predicate terminate : $S_{\pi} \times M_{\pi} \to \{\top, \bot\}$

Efficiency and Effectiveness

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:

- A. fast incremental evaluation (ie, delta evaluation)
- B. neighborhood pruning
- C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

- D. application of a metaheuristic
- E. definition of a larger neighborhood

Efficient Local Search Examples

Outline

1. Efficient Local Search

2. Examples

SAT

TSP

SMTWTP

MAX-SAT

Notation:

- ullet n 0-1 variables x_j , $j \in N = \{1,2,...,n\}$,
- m clauses C_i , $i \in M$, and weights $w_i \ (\geq 0)$, $i \in M = \{1, 2, \dots, m\}$
- $\max_{\mathbf{a} \in \{0,1\}^n} \sum \{w_i \mid i \in M \text{ and } C_i \text{ is satisfied in } \mathbf{a}\}$
- $\bullet \ \bar{x}_j = 1 x_j$
- $L = \bigcup_{j \in N} \{x_j, \bar{x_j}\}$ set of literals
- ullet $C_i\subseteq L$ for $i\in M$ (e.g., $C_i=\{x_1, \bar{x_3}, x_8\}$).

Let's take the case $w_j = 1$ for all $j \in N$

- Assignment: $\mathbf{a} \in \{0,1\}^n$
- Evaluation function: $f(\mathbf{a}) = \#$ unsatisfied clauses
- Neighborhood: one-flip
- Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest C_i)

A better approach:

- $C(x_j) = \{i \in M \mid x_j \in C_i\}$ (i.e., clauses dependent on x_j)
- $\bullet \ L(x_j) = \{l \in N \mid \exists i \in M \text{ with } x_l \in C_i \text{ and } x_j \in C_i \}$
- $f(\mathbf{a}) = \#$ unsatisfied clauses
- $\Delta(x_j) = f(\mathbf{a}) f(\mathbf{a}'), \mathbf{a}' = \delta_{1E}^{x_j}(\mathbf{a})$ (score of x_j)

Initialize:

- compute f, score of each variable, and list unsat clauses in O(mk)
- init $C(x_j)$ for all variables

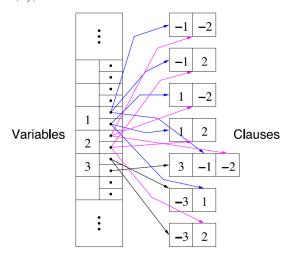
Examine Neighborhood

choose the var with best score

Update:

ullet change the score of variables affected, that is, look in $L(\cdot)$ and $C(\cdot)$ O(mk)

$C(x_j)$ Data Structure



Even better approach (though same asymptotic complexity): \rightsquigarrow after the flip of x_j only the score of variables in $L(x_j)$ that critically depend on x_j actually changes

- Clause C_i is critically satisfied by a variable x_j in a iff:
 - x_j is in C_i
 - C_i is satisfied in a and flipping x_j makes C_i unsatisfied (e.g., $1 \lor 0 \lor 0$ but not $1 \lor 1 \lor 0$)

Keep a list of such clauses for each var

- x_j is critically dependent on x_l under a iff:
 - there exists $C_i \in C(x_j) \cap C(x_l)$ and such that flipping x_j :
 - \bullet C_i changes satisfaction status
 - ullet C_i changes satisfied /critically satisfied status

<u>Initialize:</u>

- compute score of variables;
- init $C(x_i)$ for all variables
- init status criticality for each clause

Update:

change sign to score of x_j for all C_i in $C(x_j)$ do

TSP

Efficient implementations of 2-opt, 2H-opt and 3-opt local search.

- A. Delta evaluation already in O(1)
- B. Fixed radius search + DLB
- C. Data structures

Details at black board and references [Bentley, 1992; Johnson and McGeoch, 2002; Applegate et al., 2006]

Local Search for the Traveling Salesman Froblem

- k-exchange heuristics
 - 2-opt
 - 2.5-opt
 - Or-opt
 - 3-opt
- complex neighborhoods
 - Lin-Kernighan
 - Helsgaun's Lin-Kernighan
 - Dynasearch
 - ejection chains approach

Implementations exploit speed-up techniques

- 1. neighborhood pruning: fixed radius nearest neighborhood search
- 2. neighborhood lists: restrict exchanges to most interesting candidates
- 3. don't look bits: focus perturbative search to "interesting" part
- 4. sophisticated data structures

Implementation examples by Stützle:

http://www.sls-book.net/implementations.html

TSP data structures

Tour representation:

- determine pos of v in π
- determine succ and prec
- check whether u_k is visited between u_i and u_j
- execute a k-exchange (reversal)

Possible choices:

- \bullet |V| < 1.000 array for π and π^{-1}
- $\bullet \ |V| < 1.000.000$ two level tree
- |V| > 1.000.000 splay tree

Moreover static data structure:

- priority lists
- k-d trees

Look at implementation of local search for TSP by T. Stützle:

File: http://www.imada.sdu.dk/~marco/DM811/Resources/ls.c

```
two_opt_b(tour); % best improvement, no speedup
two_opt_f(tour); % first improvement, no speedup
two_opt_best(tour); % first improvement including speed-ups (dlbs, fixed radius near
    neighbour searches, neughbourhood lists)
two_opt_first(tour); % best improvement including speed-ups (dlbs, fixed radius near
    neighbour searches, neughbourhood lists)
three_opt_first(tour); % first improvement
```

Table 17.1 Cases for k-opt moves.

\overline{k}	No. of Cases
2	1
3	4
4	20
5	148
6	1,358
7	15,104
8	198,144
9	2,998,656
10	51,290,496

[Appelgate Bixby, Chvátal, Cook, 2006]

Table 17.2 Computer-generated source code for k-opt moves.

\overline{k}	No. of Lines
6	120,228
7	1,259,863
8	17,919,296

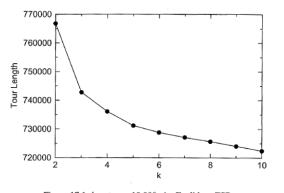


Figure 17.1 $\,k$ -opt on a 10,000-city Euclidean TSP.

References

- Applegate D.L., Bixby R.E., Chvátal V., and Cook W.J. (2006). **The Traveling Salesman Problem: A Computational Study**. Princeton University Press.
- Bentley J. (1992). Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing, 4(4), pp. 387–411.
- Johnson D.S. and McGeoch L.A. (2002). Experimental analysis of heuristics for the STSP. In *The Traveling Salesman Problem and Its Variations*, edited by G. Gutin and A. Punnen, pp. 369–443. Kluwer Academic Publishers, Boston, MA, USA.

Single Machine Total Weighted Tardines Froblem

- Interchange: size $\binom{n}{2}$ and O(|i-j|) evaluation each
 - first-improvement: π_j, π_k

$$p_{\pi_j} \leq p_{\pi_k}$$
 for improvements, $w_j T_j + w_k T_k$ must decrease because jobs in π_j, \ldots, π_k can only increase their tardiness.

$$p_{\pi_j} \geq p_{\pi_k} \quad \mbox{ possible use of auxiliary data structure to speed up the computation}$$

- best-improvement: π_j, π_k
 - $p_{\pi_j} \leq p_{\pi_k}$ for improvements, $w_j T_j + w_k T_k$ must decrease at least as the best interchange found so far because jobs in π_j, \dots, π_k can only increase their tardiness.
 - $p_{\pi_j} \geq p_{\pi_k}$ possible use of auxiliary data structure to speed up the computation
- Swap: size n-1 and O(1) evaluation each
- Insert: size $(n-1)^2$ and O(|i-j|) evaluation each But possible to speed up with systematic examination by means of swaps: an interchange is equivalent to |i-j| swaps hence overall examination takes $O(n^2)$