DM811

Heuristics for Combinatorial Optimization

Very Large Scale Neighborhoods

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

Course Overview

- Combinatorial Optimization, Methods and Models
- CH and LS: overview
- ✓ Working Environment and Solver Systems
- ✓ Methods for the Analysis of Experimental Results
- Construction Heuristics
- ✓ Local Search: Components, Basic Algorithms
- ✓ Efficient Local Search: Incremental Updates and Neighborhood Pruning
- ✓ Local Search: Neighborhoods and Search Landscape
- ✓ Stochastic Local Search & Metaheuristics
- **★** Configuration Tools: F-race
- Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, Unrelated Parallel Machines, p-median, set covering, QAP, ...

Very Large Scale Neighborhoods

Small neighborhoods:

- might be short-sighted
- need many steps to traverse the search space

Large neighborhoods

- introduce large modifications to reach higher quality solutions
- allow to traverse the search space in few steps

Key idea: use very large neighborhoods that can be searched efficiently (preferably in polynomial time) or are searched heuristically

Very large scale neighborhood search

- 1. define an exponentially large neighborhood (though, $O(n^3)$ might already be large)
- define a polynomial time search algorithm to search the neighborhood (= solve the neighborhood search problem, NSP)
 - exactly (leads to a best improvement strategy)
 - heuristically (some improving moves might be missed)

Examples of VLSN Search

[Ahuja, Ergun, Orlin, Punnen, 2002]

- based on concatenation of simple moves
 - Variable Depth Search (TSP, GP)
 - Ejection Chains
- based on Dynamic Programming or Network Flows
 - Dynasearch (ex. SMTWTP)
 - Weighted Matching based neighborhoods (ex. TSP)
 - Cyclic exchange neighborhood (ex. VRP)
 - Shortest path
- based on polynomially solvable special cases of hard combinatorial optimization problems
 - Pyramidal tours
 - Halin Graphs

Outline

Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

Variable Depth Search Ejection Chains

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- Cyclic Exchange Neighborhoods

Variable Depth Search

- **Key idea:** *Complex steps* in large neighborhoods = variable-length sequences of *simple steps* in small neighborhood.
- Use various *feasibility restrictions* on selection of simple search steps to limit time complexity of constructing complex steps.
- Perform Iterative Improvement w.r.t. complex steps.

Variable Depth Search (VDS):

determine initial candidate solution s while s is not locally optimal \mathbf{do}

 $\boldsymbol{until} \ \ construction \ \ of \ \ complex \ \ step \ \ has \ \ been \ \ completed \ ;$

Cyclic Exchange Neighborho

Graph Partitioning

Graph Partitioning

Given: G = (V, E), weighted function $\omega : V \to \mathbf{R}$, a positive number p: $0 < w_i \le p, \ \forall i \ \text{and a connectivity matrix } C = [c_{ij}] \in \mathbf{R}^{|V| \times |V|}.$

Task: A k-partition of G, V_1, V_2, \ldots, V_k : $\bigcup_{i=1}^n V_i = G$ such that:

- ullet it is admissible, ie, $|V_i| \leq p$ for all i and
- ullet it has minimum cost, ie, the sum of $c_{ij},\ i,j$ that belong to different subsets is minimal

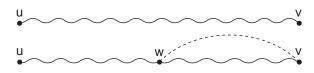
:

VLSN for the Traveling Salesman Problem CExchange Neighborho

- k-exchange heuristics
 - 2-opt [Flood, 1956, Croes, 1958]
 - 2.5-opt or 2H-opt
 - Or-opt [Or, 1976]
 - 3-opt [Block, 1958]
 - *k*-opt [Lin 1965]
- complex neighborhoods
 - Lin-Kernighan [Lin and Kernighan, 1965]
 - Helsgaun's Lin-Kernighan
 - Dynasearch
 - Ejection chains approach

The Lin-Kernighan (LK) Algorithm for the TSP (1)

- Complex search steps correspond to sequences of 2-exchange steps and are constructed from sequences of Hamiltonian paths
- • δ -path: Hamiltonian path p + 1 edge connecting one end of p to interior node of p



Variable Depth Search

Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

Basic LK exchange step:

• Start with Hamiltonian path (u, \ldots, v) :

 \bullet Obtain $\delta\text{-path}$ by adding an edge (v,w) :

ullet Break cycle by removing edge (w,v'):

• Note: Hamiltonian path can be completed into Hamiltonian cycle by adding edge (v^\prime,u) :

Construction of complex LK steps:

- 1. start with current candidate solution (Hamiltonian cycle) s; set $t^* := s$: set p := s
- 2. obtain δ -path p' by replacing one edge in p
- 3. consider Hamiltonian cycle t obtained from p by (uniquely) defined edge exchange
- 4. if $w(t) < w(t^*)$ then set $t^* := t$; p := p'; go to step 2 else accept t^* as new current candidate solution s

Note: This can be interpreted as sequence of 1-exchange steps that alternate between δ -paths and Hamiltonian cycles.

Mechanisms used by LK algorithm:

- Pruning exact rule: If a sequence of numbers has a positive sum, there is
 a cyclic permutation of these numbers such that every partial sum is
 positive.
 - → need to consider only gains whose partial sum remains positive
- Tabu restriction: Any edge that has been added cannot be removed and any edge that has been removed cannot be added in the same LK step.
 Note: This limits the number of simple steps in a complex LK step.
- Limited form of backtracking ensures that local minimum found by the algorithm is optimal w.r.t. standard 3-exchange neighborhood
- (For further details, see original article)

[LKH Helsgaun's implementation

Outline

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Ejection Chains

- Attempt to use large neighborhoods without examining them exhaustively
- Sequences of successive steps each influenced by the precedent and determined by myopic choices
- Limited in length
- Local optimality in the large neighborhood is not guaranteed.

Example (on TSP):

successive 2-exchanges where each exchange involves one edge of the previous exchange

Example (on GCP):

successive 1-exchanges: a vertex v_1 changes color from $\varphi(v_1)=c_1$ to c_2 , in turn forcing some vertex v_2 with color $\varphi(v_2)=c_2$ to change to another color c_3 (which may be different or equal to c_1) and again forcing a vertex v_3 with color $\varphi(v_3)=c_3$ to change to color c_4 .

Outline

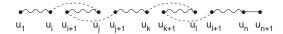
Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- Cyclic Exchange Neighborhoods

Dynasearch

- Iterative improvement method based on building complex search steps from combinations of mutually independent search steps
- Mutually independent search steps do not interfere with each other wrt effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:



Therefore: Overall effect of complex search step = sum of effects of constituting simple steps; complex search steps maintain feasibility of candidate solutions.

• **Key idea:** Efficiently find optimal combination of mutually independent simple search steps using *Dynamic Programming*.

Dynasearch for SMTWTP

- two interchanges δ_{jk} and δ_{lm} are independent if $\max\{j,k\} < \min\{l,m\}$ or $\min\{l,k\} > \max\{l,m\}$;
- the dynasearch neighborhood is obtained by a series of independent interchanges;
- it has size $2^{n-1} 1$;
- but a best move can be found in $O(n^3)$ searched by dynamic programming;
- it yields in average better results than the interchange neighborhood alone.

Table 1 Data for the Problem Instance									
Job j		1	2	3	4	5	(
Processing time p _i		3	1	1	5	1			
Weight w,	,	3	5	1	1	4			
Due date d		1	5	3	1	3			

Table 2	Swaps Made by Best-Improve Descent				
Iteration	Current Sequence	Total Weighted Tardiness			
	123456	109			
1	123546	90			
2	123564	75			
3	523164	70			

Table 3	Dynasearch Swaps				
Iteration	Current Sequence	Total Weighted Tardiness			
	123456	109			
1	132546	89			
2	152364	68			
3	512364	67			

- state (k,π)
- ullet π_k is the partial sequence at state (k,π) that has min $\sum wT$
- π_k is obtained from state (i, π)

$$\begin{cases} \text{appending job } \pi(k) \text{ after } \pi(i) & i = k-1 \\ \text{appending job } \pi(k) \text{ and interchanging } \pi(i+1) \text{ and } \pi(k) & 0 \leq i < k-1 \end{cases}$$

$$F(\pi_{0}) = 0; F(\pi_{1}) = w_{\pi(1)} \left(p_{\pi(1)} - d_{\pi(1)} \right)^{+};$$

$$F(\pi_{k}) = \min \begin{cases} F(\pi_{k-1}) + w_{\pi(k)} \left(C_{\pi(k)} - d_{\pi(k)} \right)^{+}, \\ \min_{1 \le i < k-1} \left\{ F(\pi_{i}) + w_{\pi(k)} \left(C_{\pi(i)} + p_{\pi(k)} - d_{\pi(k)} \right)^{+} + \sum_{j=i+2}^{k-1} w_{\pi(j)} \left(C_{\pi(j)} + p_{\pi(k)} - p_{\pi(i+1)} - d_{\pi(j)} \right)^{+} + w_{\pi(i+1)} \left(C_{\pi(k)} - d_{\pi(i+1)} \right)^{+} \right\}$$

- ullet The best choice is computed by recursion in $O(n^3)$ and the optimal series of interchanges for $F(\pi_n)$ is found by backtrack.
- Local search with dynasearch neighborhood starts from an initial sequence, generated by ATC, and at each iteration applies the best dynasearch move, until no improvement is possible (that is, $F(\pi_n^t) = F(\pi_n^{(t-1)})$, for iteration t).
- Speedups:
 - ullet pruning with considerations on $p_{\pi(k)}$ and $p_{\pi(i+1)}$
 - maintainig a string of late, no late jobs
 - h_t largest index s.t. $\pi^{(t-1)}(k) = \pi^{(t-2)}(k)$ for $k=1,\ldots,h_t$ then $F(\pi_k^{(t-1)}) = F(\pi_k^{(t-2)})$ for $k=1,\ldots,h_t$ and at iter t no need to consider $i < h_t$.

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

Dynasearch, refinements:

- [Grosso et al. 2004] add insertion moves to interchanges.
- \bullet [Ergun and Orlin 2006] show that dynasearch neighborhood can be searched in $O(n^2).$

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

Performance:

- exact solution via branch and bound feasible up to 40 jobs [Potts and Wassenhove, Oper. Res., 1985]
- exact solution via time-indexed integer programming formulation used to lower bound in branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]
- dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

Outline

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Weighted Matching Neighborhoods

- **Key idea** use basic polynomial time algorithms, example: weighted matching in bipartied graphs, shortest path, minimum spanning tree.
- Neighborhood defined by finding a minimum cost matching on a (bipartite) improvement graph

Example (TSP)

Neighborhood: Eject k nodes and reinsert them optimally

Outline

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Cyclic Exchange Neighborhoods

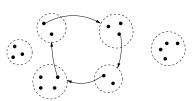
- Possible for problems where solution can be represented as form of partitioning
- Definition of a partitioning problem:

Given: a set W of n elements, a collection $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ of subsets of W, such that $W = T_1 \cup \ldots \cup T_k$ and $T_i \cap T_j = \emptyset$, and a cost function $c: \mathcal{T} \to \mathbf{R}$:

Task: Find another partition \mathcal{T}' of W by means of single exchanges between the sets such that

$$\min \sum_{i=1}^{k} c(T_i)$$

Cyclic exchange:



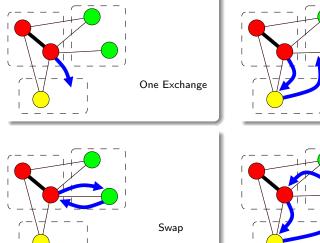
Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho

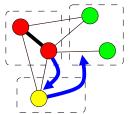
Neighborhood search

- Define an improvement graph
- Solve the relative
 - Subset Disjoint Negative Cost Cycle Problem
 - Subset Disjoint Minimum Cost Cycle Problem

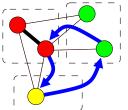
Example (GCP)
Neighborhood Structures: Very Large Scale Neighborhood

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighbo Cyclic Exchange Neighborho





Path Exchange



Cyclic Exchange

Exponential size but can be searched efficiently

A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph can be solved by dynamic programming in $\mathcal{O}(|V|^2 2^k |D'|)$.

Yet, heuristic rules can be adopted to reduce the complexity to $\mathcal{O}(|V'|^2)$

Procedure SDNCC(G'(V', D'))

Let $\mathcal P$ all negative cost paths of length 1, Mark all paths in $\mathcal P$ as untreated Initialize the best cycle $q^*=()$ and $c^*=0$

for all $p \in \mathcal{P}$ do

while $\mathcal{P} \neq \emptyset$ do

Let
$$\widehat{\mathcal{P}}=\mathcal{P}$$
 be the set of untreated paths $\mathcal{P}=\emptyset$

while $\exists \ p \in \widehat{\mathcal{P}}$ untreated do

Select some untreated path $p \in \widehat{\mathcal{P}}$ and mark it as treated for all $(e(p),j) \in D'$ s.t. $w_{\varphi(v_j)}(p) = 0$ and c(p) + c(e(p),j) < 0 do Add the extended path $(s(p),\ldots,e(p),j)$ to \mathcal{P} as untreated if $(j,s(p)) \in D'$ and $c(p) + c(e(p),j) + c(j,s(p)) < c^*$ then $q^* =$ the cycle obtained closing the path $(s(p),\ldots,e(p),j)$ $c^* = c(q^*)$

return a minimal negative cost cycle q^* of cost c^*