
DM811

Heuristics for Combinatorial Optimization

Lecture 2
Heuristics: basic ideas

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Summary

1. Course Introduction

2. Combinatorial Optimization

Combinatorial Problems, Terminology
Solution Methods, Overview
Travelling Salesman Problem

3. Problem Solving

Example: Graph Coloring Problem
Polya’s view about Problem Solving

4. Basic Concepts from Algorithmics
(Review slides and Cormen, Leiserson, Rivest and Stein. Introduction to
algorithms. 2001)

2

Outline

1. Modelling and Search
IP-models
CP-models
Modeling for Heuristics
Search

2. Search Paradigms
Construction Heuristics
Local Search

3

Outline

1. Modelling and Search
IP-models
CP-models
Modeling for Heuristics
Search

2. Search Paradigms
Construction Heuristics
Local Search

4

solution algorithm = model + search

5

Mathematical Programming Models

How to model an optimization problem

choose some decision variables
they typically encode the result we are interested into
express the problem constraints in terms of these variables
they specify what the solutions to the problem are
express the objective function
the objective function specifies the quality of each solution

The result is an optimization model

It is a declarative formulation
specify the “what”, not the “how”
There may be many ways to model an optimization problem

7

IP-models

Standard IP formulation: Let xvk be a 0–1 variable equal to 1 whenever the
vertex v takes the color k
and yk be 1 if color k is used and 0 otherwise

min
∑
k∈K

yk

s.t.
∑
k∈K

xvk = 1, ∀v ∈ V,

xvk + xuk ≤ yk, ∀(u, v) ∈ E(G),∀k ∈ K,
xvk ∈ {0, 1}, ∀v ∈ V,∀k ∈ K
yk ∈ {0, 1}, ∀k ∈ K.

8

Column generation formulation

Notation
Independent set s, with cardinality cs
S: Collection of every maximal independent set of G
Sv : subset of S that contains v
λs: 0-1 variable equal to 1 if independent set s is used

min
∑
s∈S

λs

s.t.
∑
s∈Sv

λs ≥ 1, ∀v ∈ V,

λs ∈ {0, 1}, ∀s ∈ S.

9

Constraint Programming

The domain of a variable x, denoted D(x), is a finite set of elements that
can be assigned to x.

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · ×D(xk) (extensional form). A tuple
(d1, . . . , dk) ∈ C is called a solution to C.
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi,∀1 ≤ i ≤ k, and that this assignment satisfies C
(intentional form). If C = ∅, we say that it is inconsistent.

11

Constraint Programming

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X, together with a finite set of constraints
C, each on a subset of X. A solution to a CSP is an assignment of a value
d ∈ D(x) to each x ∈ X, such that all constraints are satisfied
simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · ×D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f(d).

12

CP-model

CP formulation:

variables : domain(yi) = {1, . . . ,K} ∀i ∈ V

constraints : yi 6= yj ∀ij ∈ E(G)

alldifferent({yi | i ∈ C}) ∀C ∈ C

13

Propagation: An Example

14

Constraint based Modelling

Can be done within the same framework of Constraint Programming.
See Constraint Based Local-Search (Hentenryck and Michel) [B4].

Decide the variables.
An assignment of these variables should identify a candidate solution
or a candidate solution must be retrievable efficiently
Must be linked to some Abstract Data Type (arrays, sets, permutations).

Express the constraints on these variables

No restrictions are posed on the language in which the above two elements
are expressed.

16

Search

Backtracking (complete)

Branch and Bound (complete)

Local search (incomplete)

18

Example: Knapsack problem

Knapsack problem

Given: a set of items I, each item i ∈ I characterized by
its weight wi

its value vi
and a capacity K for a knapsack

Task: find the subset of items in I
does not exceed the capacity K of the knapsack
that has maximum value

19

Branch and Bound

20

Relaxing integrality

21

Relaxing capacity constraint

22

Dynamic Programming

Notation:
assume that I = 1, 2, ..., n

O(k, j) denotes the optimal solution to the knapsack problem with
capacity k and items [1..j]

We are interested in finding out the best value O(K,n)

23

Recurrence relation

Assume that we know how to solve

O(k, j − 1) for all k ∈ 0..K

We want to solve O(k, j): We are just considering one more item, i.e.,
item j.
If wj ≤ k, there are two cases

Either we do not select item j, then the best solution we can obtain is
O(k, j − 1)
Or we select item j and the best solution is vj + O(k − wj , j − 1)

In summary

O(k, j) =

{
max{O(k, j − 1), vj +O(k − wj, j − 1)} ifwj ≤ k
O(k, j − 1) otherwise

Initial conditions:

O(k, 0) = 0 for all k

24

Compute the recurrence relation bottom up� �
int O(int k,int j) {
if (j == 0)
return 0;

else if (wj <= k)
return max(O(k,j-1),vj + O(k-wj,j-1));

else
return O(k,j-1)

}� �
How efficient is this approach?

25

Outlook

To come:

Construction Heuristics

High level description of Local Search

Solver Systems

Setting up the Working Environment

26

Outline

1. Modelling and Search
IP-models
CP-models
Modeling for Heuristics
Search

2. Search Paradigms
Construction Heuristics
Local Search

27

Construction Heuristics

Construction heuristics

(aka, single pass heuristics or dispatching rules in scheduling)
They are closely related to tree search techniques but correspond to a single
path from root to leaf

search space = partial candidate solutions
search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
while s is not a complete candidate solution do

choose a solution component (Xi = vj)
add the solution component to s

29

Designing Constr. Heuristics

Which variable should we assign next,
and in what order should its values be tried?

Select-Unassigned-Variable

Static: Degree heuristic (reduces infeasibility risk)
(The degree of a variable is defined as the number of constraints it is
involved in)

Dynamic: Most constrained variable = Fail-first heuristic = Minimum
remaining values heuristic

Order-Domain-Values
eg, least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

30

Designing Constr. Heuristics

Ideas for variable selection:
with smallest min value
with largest min value
with smallest max value
with largest max value

with smallest domain size
with largest domain size

with smallest degree. In case of ties, variable with smallest domain.
with largest degree. In case of ties, variable with smallest domain.
with smallest domain size divided by degree
with largest domain size divided by degree

The min-regret of a variable is the difference between the smallest and
second-smallest value still in the domain.

with smallest min-regret: i = argmin ∆f
(2)
i −∆f

(1)
i

with largest min-regret: i = argmax ∆f
(2)
i −∆f

(1)
i

with smallest max-regret: i = argmin ∆f
(n)
i −∆f

(1)
i

with largest max-regret: i = argmax ∆f
(n)
i −∆f

(1)
i

31

Designing Constr. Heuristics

Ideas for value selection
Select smallest value
Select median value
Select maximal value

Look-ahead:
Select value that leaves the largest number of feasible values to the other
variables
Select value that leaves the smallest number of feasible values to the
other variables (fail early)

32

Example: Knapsack

33

Greedy best-first search

34

Sometimes greedy heuristics can be proved to be optimal
minimum spanning tree,
single source shortest path,
total weighted sum completion time in single machine scheduling,
single machine maximum lateness scheduling

Other times an approximation ratio can be proved

35

Local Search Paradigm

search space = complete candidate solutions
search step = modification of one or more solution components

neighborhood candidate solutions in the search space reachable in a step

iteratively generate and evaluate candidate solutions
decision problems: evaluation = test if solution
optimization problems: evaluation = check objective function value

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s′ of s such that f(s′) < f(s)
s := s′

37

Local Search Algorithm

Basic Components:

solution representation search space

initial solution

neighborhood relation (determines the move operator)

evaluation function

38

Course Overview

4 Combinatorial Optimization, Methods and Models

1. CH and LS: overview

2. Working Environment and Solver System

3. Methods for the Analysis of Experimental Results

4. Construction Heuristics

5. Local Search: Components, Basic Algorithms

6. Local Search: Neighborhoods and Search Landscape

7. Efficient Local Search: Incremental Updates and Neighborhood Pruning

8. Stochastic Local Search & Metaheuristics

9. Configuration Tools: F-race

10. Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
p-median, set covering

39

	Modelling and Search
	IP-models
	CP-models
	Modeling for Heuristics
	Search

	Search Paradigms
	Construction Heuristics
	Local Search

