DM811

Heuristics for Combinatorial Optimization

Lecture 4

Construction Heuristics and Metaheuristics

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Course Overview

- ✓ Combinatorial Optimization, Methods and Models
- CH and LS: overview
- ✓ Working Environment and Solver Systems
- ✓ Methods for the Analysis of Experimental Results
 - Construction Heuristics
 - Local Search: Components, Basic Algorithms
 - Local Search: Neighborhoods and Search Landscape
 - Efficient Local Search: Incremental Updates and Neighborhood Pruning
 - Stochastic Local Search & Metaheuristics
 - Configuration Tools: F-race
 - Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, p-median, set covering

1. Construction Heuristics

Complete Search Methods
Dealing with Objectives
Dealing with Constraints
Incomplete Search Methods

2. Metaheuristics

Bounded backtrack Limited Discrepancy Search Random Restart Rollout/Pilot Method Beam Search Iterated Greedy GRASP

1. Construction Heuristics

Complete Search Methods
Dealing with Objectives
Dealing with Constraints
Incomplete Search Methods

2. Metaheuristics

Bounded backtrack
Limited Discrepancy Search
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

1. Construction Heuristics

Complete Search Methods
Dealing with Objectives
Dealing with Constraints

2. Metaheuristics

Bounded backtrack Limited Discrepancy Search Random Restart Rollout/Pilot Method Beam Search Iterated Greedy GRASP

Complete Search Methods

Tree search:

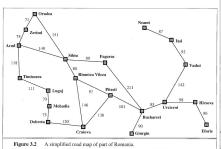
Uninformed Search

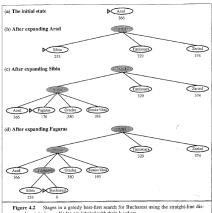
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search
- Bidirectional Search

Informed Search

- best-first search, aka, greedy search
- A* search
- Iterative Deepening A*
- Memory bounded A*
- Recursive best first

Greedy best-first search





tance heuristic h_{SLD}. Nodes are labeled with their h-values.

A* search

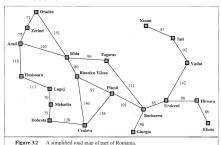
ullet The priority assigned to a node x is determined by the function

$$f(x) = g(x) + h(x)$$

g(x): cost of the path so far

h(x): heuristic estimate of the minimal cost to reach the goal from x.

- It is optimal if h(x) is an
 - admissible heuristic: never overestimates the cost to reach the goal
 - consistent: $h(n) \le c(n, a, n') + h(n')$



(a) The initial state And 366s0+366 (b) After expanding Arad Sibi₂ 393=140+253 (c) After expanding Sibiu 447=118+329 (d) After expanding Rimnicu Vilcea 646m280+366 415=239+176 671=291+380 (e) After expanding Fagaras Sibis Bodwing 591x338+253 450x450+0 (f) After expanding Pitesti Zerind 449=75+374 (And) @

Possible choices for admissible heuristic functions

- optimal solution to an easily solvable relaxed problem
- optimal solution to an easily solvable subproblem
- learning from experience by gathering statistics on state features
- preferred heuristics functions with higher values (provided they do not overestimate)
- if several heuristics available h_1, h_2, \ldots, h_m and not clear which is the best then:

$$h(x) = \max\{h_1(x), \dots, h_m(x)\}\$$

Drawbacks

• Time complexity: In the worst case, the number of nodes expanded is exponential,

(but it is polynomial when the heuristic function h meets the following condition:

$$|h(x) - h^*(x)| \le O(\log h^*(x))$$

 h^* is the optimal heuristic, the exact cost of getting from x to the goal.)

 Memory usage: In the worst case, it must remember an exponential number of nodes.

Several variants: including iterative deepening A^* (IDA*), memory-bounded A^* (MA*) and simplified memory bounded A^* (SMA*) and recursive best-first search (RBFS)

1. Construction Heuristics

Complete Search Methods
Dealing with Objectives
Dealing with Constraints
Incomplete Search Methods

Metaheuristics

Bounded backtrack Limited Discrepancy Search Random Restart Rollout/Pilot Method Beam Search Iterated Greedy

Constraint Satisfaction and Backtracking Descriptions

- 1) Which variable should we assign next, and in what order should its values be tried?
 - Select-Initial-Unassigned-Variable
 - Select-Unassigned-Variable
 - most constrained first = fail-first heuristic
 = Minimum remaining values (MRV) heuristic
 (tend to reduce the branching factor and to speed up pruning)
 - least constrained last

Eg.: max degree, farthest, earliest due date, etc.

- Order-Domain-Values
 - greedy
 - least constraining value heuristic (leaves maximum flexibility for subsequent variable assignments)
 - maximal regret implements a kind of look ahead

2) What are the implications of the current variable assignments for the other unassigned variables?

Propagating information through constraints:

- Implicit in Select-Unassigned-Variable
- Forward checking (coupled with Minimum Remaining Values)
- Constraint propagation in CSP
 - ullet arc consistency: force all (directed) arcs uv to be consistent:
 - \exists a value in D(v): \forall values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each assignment (Maintaining Arc Consistency)

Applied repeatedly

[Can you find preprocessing rules for the graph coloring problem?]

3) When a path fails – that is, a state is reached in which a variable has no legal values can the search avoid repeating this failure in subsequent paths?

Backtracking-Search

- chronological backtracking, the most recent decision point is revisited
- backjumping, backtracks to the most recent variable in the conflict set (set of previously assigned variables connected to X by constraints).

Incomplete Search

Complete search is often better suited when ...

- proofs of insolubility or optimality are required;
- time constraints are not critical;
- problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...

- non linear constraints and non linear objective function;
- reasonably good solutions are required within a short time;
- problem-specific knowledge is rather limited.

Greedy algorithms

Greedy algorithms (derived from best-first)

- Strategy: always make the choice that is best at the moment
- Single descent in the search tree
- They are not generally guaranteed to find globally optimal solutions (but sometimes they do: Minimum Spanning Tree, Single Source Shortest Path, etc.)

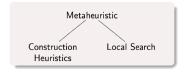
We will see problem sepcific examples

Construction Heuristics
 Complete Search Methods
 Dealing with Objectives
 Dealing with Constraints
 Incomplete Search Methods

2. Metaheuristics

Bounded backtrack Limited Discrepancy Search Random Restart Rollout/Pilot Method Beam Search Iterated Greedy GRASP

Metaheuristics



Metaheuristics

On backtracking framework (beyond best-first search)

- Random Restart
- Bounded backtrack
- Credit-based search
- Limited Discrepancy Search
- Barrier Search
- Randomization in Tree Search

Outside the exact framework (beyond greedy search)

- Random Restart
- Rollout/Pilot Method
- Beam Search
- Iterated Greedy
- GRASP
- (Adaptive Iterated Construction Search)
- (Multilevel Refinement)

Bounded backtrack

Bounded-backtrack search:

bbs(10)

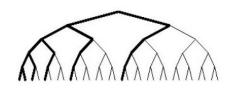
Depth-bounded, then bounded-backtrack search:

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

Limited Discrepancy Search

Limited Discrepancy Search (LDS)

- Key observation that often the heuristic used in the search is nearly always correct with just a few exceptions.
- Explore the tree in increasing number of discrepancies, modifications from the heuristic choice.
- Eg: count one discrepancy if second best is chosen count two discrepancies either if third best is chosen or twice the second best is chosen
- Control parameter: the number of discrepancies



Randomization in Tree Search

The idea comes from complete search: the important decisions are made up in the search tree (backdoors - set of variables such that once they are instantiated the remaining problem simplifies to a tractable form)

\[
\sim \text{random selections} + \text{restart strategy}
\]

Random selections

- randomization in variable ordering:
 - breaking ties at random
 - use heuristic to rank and randomly pick from small factor from the best
 - random pick among heuristics
 - random pick variable with probability depending on heuristic value
- randomization in value ordering:
 - just select random from the domain

Restart strategy in backtracking

• Example: $S_u = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, ...)$

Rollout/Pilot Method

Derived from A*

- Each candidate solution is a collection of m components $S = (s_1, s_2, \dots, s_m)$.
- Master process adds components sequentially to a partial solution $S_k = (s_1, s_2, \dots s_k)$
- At the *k*-th iteration the master process evaluates feasible components to add based on an heuristic look-ahead strategy.
- ullet The evaluation function $H(S_{k+1})$ is determined by sub-heuristics that complete the solution starting from S_k
- Sub-heuristics are combined in $H(S_{k+1})$ by
 - weighted sum
 - minimal value

Speed-ups:

- halt whenever cost of current partial solution exceeds current upper bound
- evaluate only a fraction of possible components

Beam Search

Again based on tree search:

- \bullet maintain a set B of bw (beam width) partial candidate solutions
- ullet at each iteration extend each solution from B in fw (filter width) possible ways
- ullet rank each bw imes fw candidate solutions and take the best bw partial solutions
- ullet complete candidate solutions obtained by B are maintained in B_f
- ullet Stop when no partial solution in B is to be extended

Iterated Greedy

(aka, Adaptive Large Neighborhood Search, see later)

Key idea: use greedy construction

- alternation of construction and deconstruction phases
- an acceptance criterion decides whether the search continues from the new or from the old solution.

Iterated Greedy (IG):

```
determine initial candidate solution s

while termination criterion is not satisfied do

r:=s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,
keep s or revert to s:=r
```

GRASP Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local search.

Motivation:

- Candidate solutions obtained from construction heuristics can often be substantially improved by local search.
- Local search methods often require substantially fewer steps to reach high-quality solutions when initialized using greedy constructive search rather than random picking.
- By iterating cycles of constructive + local search, further performance improvements can be achieved.

Greedy Randomized "Adaptive" Search Procedure (GRASP):

while termination criterion is not satisfied do
generate candidate solution s using
subsidiary greedy randomized constructive search
perform subsidiary local search on s

- Randomization in constructive search ensures that a large number of good starting points for subsidiary local search is obtained.
- Constructive search in GRASP is 'adaptive' (or dynamic): Heuristic value of solution component to be added to a given partial candidate solution may depend on solution components present in it.
- Variants of GRASP without local search phase (aka semi-greedy heuristics) typically do not reach the performance of GRASP with local search.

Restricted candidate lists (RCLs)

- Each step of *constructive search* adds a solution component selected uniformly at random from a restricted candidate list (RCL).
- RCLs are constructed in each step using a heuristic function h.
 - RCLs based on cardinality restriction comprise the k best-ranked solution components. (k is a parameter of the algorithm.)
 - RCLs based on value restriction comprise all solution components l for which $h(l) \leq h_{min} + \alpha \cdot (h_{max} h_{min})$, where h_{min} = minimal value of h and h_{max} = maximal value of h for any l. (α is a parameter of the algorithm.)
 - Possible extension: reactive GRASP (e.g., dynamic adaptation of α during search)

Example: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create troubles.

Squeaky Wheel

- Constructor: greedy algorithm on a sequence of problem elements.
- Analyzer: assign a penalty to problem elements that contribute to flaws in the current solution.
- Prioritizer: uses the penalties to modify the previous sequence of problem elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

1. Construction Heuristics
Complete Search Methods
Dealing with Objectives
Dealing with Constraints

2. Metaheuristics

Bounded backtrack Limited Discrepancy Search Random Restart Rollout/Pilot Method Beam Search Iterated Greedy GRASP

Guidelines for Text Writing From common bad practice in this course

Outline:

- 1. word (discursive) description
- 2. precise algorithm using mathematical notation and pseudo-code
- 3. implementation details, ie, abstract data structures
- 4. computational (runtime, space) analysis
- Refer to floating environments like Algorithms and Figures that you present in the text
- Cite your sources in a proper and detailed way, they must be retrievable by the reader. If you do not do it then you are committing plagiarism.
- Before submitting: run spell checker and then read again and again and again
- Mathematical notation makes things clearer and precise and the overall descriptions more concise. (but use latex!)
- As a reader you should ask yourself whether you would be able to reproduce the algorithm in exactly the same way as described.

- Algorithmic sketches in pseudo-code must be code independent
- Complexity analysis is relevant: it helps to understand the algorithm and gives idea about how things can be implemented efficiently
- Aim at beauty, eg, general approaches rather than problem dependent.
- Reason on the problem, do not do things mechanically, every problem is a different story.
- Originality counts
- Language, choose the one you prefer
- Avoid self-pietism: Do not write "I did not have time to..."
- Focus on efficency, aim at the Pareto frontier.
- See also Comment List and examples of past final projects from course web page