
DM811

Heuristics for Combinatorial Optimization

Lecture 8
Local Search (cntd.)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Local Search Revisited
Basic AlgorithmsSummary: Local Search Algorithms

(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. evaluation function fπ : S → R

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}

2

Local Search Revisited
Basic AlgorithmsOutline

1. Local Search Revisited
Components

2. Basic Algorithms

3

Local Search Revisited
Basic AlgorithmsLS Algorithm Components

Search space

Search Space

Defined by the solution representation:

permutations
linear (scheduling)
circular (TSP)

arrays (assignment problems: GCP)

sets or lists (partition problems: graph partitioning, max indep. set)

5

Local Search Revisited
Basic AlgorithmsLS Algorithm Components

Evaluation function

Evaluation (or cost) function:

function fπ : Sπ → Q that maps candidate solutions of
a given problem instance π onto rational numbers (most often integer),
such that global optima correspond to solutions of π;
used for assessing or ranking neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:

Evaluation function: part of LS algorithm.
Objective function: integral part of optimization problem.
Some LS methods use evaluation functions different from given objective
function (e.g., guided local search).

6

Local Search Revisited
Basic AlgorithmsConstrained Optimization Problems

Constrained Optimization Problems exhibit two issues:

feasibility
eg, treveling salesman problem with time windows: customers must be
visited within their time window.

optimization
minimize the total tour.

How to combine them in local search?

sequence of feasibility problems

staying in the space of feasible candidate solutions

considering feasible and infeasible configurations

7

Local Search Revisited
Basic AlgorithmsConstraint-based local search

From [B3]

If infeasible solutions are allowed, we count violations of constraints.

What is a violation?
Constraint specific:

decomposition-based violations
number of violated constraints, eg: alldiff

variable-based violations
min number of variables that must be changed to satisfy c.

value-based violations
for constraints on number of occurences of values

arithmetic violations

combinations of these

8

Local Search Revisited
Basic AlgorithmsConstraint-based local search

From [B3]

Combinatorial constraints

alldiff(x1, . . . , xn):
Let a be an assignment with values V = {a(x1), . . . , a(xn)} and
cv = #a(v, x) be the number of variables with the same value.
Possible definitions for violations are:

viol =
∑
v∈V I(max{cv − 1, 0} > 0) value-based

viol = maxv∈V max{cv − 1, 0} value-based
viol =

∑
v∈V max{cv − 1, 0} value-based

variables with same value, variable-based, here leads to same
definitions as previous three

Arithmetic constraints

l ≤ r viol = max{l − r, 0}
l = r viol = |l − r|
l 6= r viol = 1 if l = r, 0 otherwise

9

Local Search Revisited
Basic AlgorithmsLS Algorithm Components

Neighborhood function

Neighborhood function

Also defined as: N : S × S → {T, F} or N ⊆ S × S

neighborhood (set) of candidate solution s: N(s) := {s′ ∈ S | N (s, s′)}
neighborhood size is |N(s)|
neighborhood is symmetric if: s′ ∈ N(s)⇒ s ∈ N(s′)

neighborhood graph of (S,N, π) is a directed graph: GNπ
:= (V,A)

with V = Sπ and (uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood undirected graph)

Notation: N when set, N when collection of sets or function

10

Local Search Revisited
Basic Algorithms

A neighborhood function is also defined by means of an operator.

An operator ∆ is a collection of operator functions δ : S → S such that

s′ ∈ N(s) =⇒ ∃ δ ∈ ∆, δ(s) = s′

Definition

k-exchange neighborhood: candidate solutions s, s′ are neighbors iff s differs
from s′ in at most k solution components

Examples:

1-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

2-exchange neighborhood for TSP
(solution components = edges in given graph)

11

Local Search Revisited
Basic AlgorithmsLS Algorithm Components

Definition:

Local minimum: search position without improving neighbors wrt given
evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f(s) ≤ f(s′) for all s′ ∈ N(s).

Strict local minimum: search position s ∈ S such that
f(s) < f(s′) for all s′ ∈ N(s).

Local maxima and strict local maxima: defined analogously.

12

Local Search Revisited
Basic AlgorithmsLS Algorithm Components

Note:

Local search implements a walk through the neighborhood graph

Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

Local search algorithms can be described as Markov processes:
behavior in any search state {s,m} depends only
on current position s
higher order MP if (limited) memory m.

13

Local Search Revisited
Basic AlgorithmsLS Algorithm Components

Step function

Search step (or move):
pair of search positions s, s′ for which
s′ can be reached from s in one step, i.e., N (s, s′) and
step({s,m}, {s′,m′}) > 0 for some memory states m,m′ ∈M .

Search trajectory: finite sequence of search positions < s0, s1, . . . , sk >
such that (si−1, si) is a search step for any i ∈ {1, . . . , k}
and the probability of initializing the search at s0
is greater than zero, i.e., init({s0,m}) > 0
for some memory state m ∈M .

Search strategy: specified by init and step function; to some extent
independent of problem instance and other components of LS algorithm.

random
based on evaluation function
based on memory

14

Local Search Revisited
Basic AlgorithmsOutline

1. Local Search Revisited
Components

2. Basic Algorithms

15

Local Search Revisited
Basic AlgorithmsIterative Improvement

does not use memory
init: uniform random choice from S or construction heuristic
step: uniform random choice from improving neighbors

Pr(s, s′) =

{
1/|I(s)| if s′ ∈ I(s)

0 otherwise

where I(s) := {s′ ∈ S | N (s, s′) and f(s′) < f(s)}

terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or
hill-climbing.

16

Local Search Revisited
Basic AlgorithmsIterative Improvement (cntd)

Pivoting rule decides which neighbors go in I(s)

Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbors,
i.e., I(s) := {s′ ∈ N(s) | f(s′) = g∗},
where g∗ := min{f(s′) | s′ ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step!

First Improvement: Evaluate neighbors in fixed order,
choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst
case; order of evaluation can impact performance.

17

Local Search Revisited
Basic AlgorithmsExamples

Iterative Improvement for SAT

search space S: set of all truth assignments to variables in given formula F
(solution set S′: set of all models of F)

neighborhood relation N : 1-flip neighborhood

memory: not used, i.e., M := {0}
initialization: uniform random choice from S, i.e., init(∅, {a}) := 1/|S| for
all assignments a

evaluation function: f(a) := number of clauses in F
that are unsatisfied under assignment a
(Note: f(a) = 0 iff a is a model of F .)

step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/|I(a)| if a′ ∈ I(a),
and 0 otherwise, where I(a) := {a′ | N (a, a′) ∧ f(a′) < f(a)}
termination: when no improving neighbor is available
i.e., terminate(a,>) := 1 if I(a) = ∅, and 0 otherwise.

18

Local Search Revisited
Basic AlgorithmsExamples

Random order first improvement for SAT
URW-for-SAT(F ,maxSteps)
input: propositional formula F , integer maxSteps
output: a model for F or ∅
choose assignment ϕ of truth values to all variables in F

uniformly at random;
steps := 0;
while ¬(ϕ satisfies F) and (steps < maxSteps) do

select x uniformly at random from {x′|x′ is a variable in F and
changing value of x′ in ϕ decreases the number of unsatisfied clauses}
steps := steps+1;

if ϕ satisfies F then
return ϕ

else
return ∅

19

Local Search Revisited
Basic AlgorithmsIn Comet

Iterative Improvement

queensLS00.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size, v in Size : S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<endl;

}
it = it + 1;

}
cout << queen << endl;� �

20

Local Search Revisited
Basic AlgorithmsIn Comet

Best Improvement

queensLS0.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
selectMin(q in Size,v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<endl;

}
it = it + 1;

}
cout << queen << endl;� �

21

Local Search Revisited
Basic AlgorithmsIn Comet

First Improvement

queensLS2.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
selectFirst(q in Size, v in Size: S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<endl;

}
it = it + 1;

}
cout << queen << endl;� �

22

Local Search Revisited
Basic AlgorithmsIn Comet

Min Conflict Heuristic

queensLS0b.co� �
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations() <<endl;

}
it = it + 1;

}
}
cout << queen << endl;� �

23

Local Search Revisited
Basic AlgorithmsIn Comet

General procedure
queensLS-generic.co� �

function void conflictSearch (Constraint<LS> c, int itLimit) {
int it = 0;
var{int}[] x = c.getVariables();
range Size = x.getRange();
while (!c.isTrue() && it < itLimit) {

selectMax(i in Size)(c.violations(x[i]))
selectMin(v in x[i].getDomain())(c.getAssignDelta(x[i],v))

x[i] := v;
it = it + 1;

}
}

import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

conflictSearch(S,50*n);
cout << queen << endl;� �24

Local Search Revisited
Basic AlgorithmsExamples: TSP

Random-order first improvement for the TSP

Given: TSP instance G with vertices v1, v2, . . . , vn.
search space: Hamiltonian cycles in G;
neighborhood relation N : standard 2-exchange neighborhood

Initialization:
search position := fixed canonical tour < v1, v2, . . . , vn, v1 >
P := random permutation of {1, 2, . . . , n}

Search steps: determined using first improvement
w.r.t. f(s) = cost of tour s, evaluating neighbors
in order of P (does not change throughout search)

Termination: when no improving search step possible
(local minimum)

26

Local Search Revisited
Basic AlgorithmsExamples: TSP

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ
for i = 1 to n− 1 do

for j = i+ 1 to n do
if P [i] + 1 = P [j] or P [j] + 1 = P [i] then continue
if P [i] + 1 ≥ n or P [j] + 1 ≥ n then continue
∆ij = d(πP [i], πP [j]) + d(πP [i]+1, πP [j]+1)+

−d(πP [i], πP [i]+1)− d(πP [j], πP [j]+1)

if ∆ij < 0 then
UpdateTour(s, i, j)

is it really?

27

	Local Search Revisited
	Components

	Basic Algorithms

