DM811

Heuristics for Combinatorial Optimization

Examples

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Examples

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour $s \in S(\in)$
output: a local optimum $s \in S_{\pi}$

```
for }i=1\mathrm{ to }n-1\mathrm{ do
    for }j=i+1 to n do
    if P[i]+1=P[j] or P[j]+1=P[i] then continue
    if P[i]+1\geqn or P[j]+1\geqn then continue
    \Delta 泣 = d (\mp@subsup{\pi}{P[i]}{},\mp@subsup{\pi}{P[j]}{})+d(\mp@subsup{\pi}{P[i]+1}{},\mp@subsup{\pi}{P[j]+1}{})+
                                    -d(\mp@subsup{\pi}{P[i]}{},\mp@subsup{\pi}{P[i]+1}{})-d(\mp@subsup{\pi}{P[j]}{},\mp@subsup{\pi}{P[j]+1}{})
    if }\mp@subsup{\Delta}{ij}{}<0\mathrm{ then
    UpdateTour(s,i,j)
```

is it really?

Examples

Iterative Improvement for TSP TSP-2opt-first(s) input: an initial candidate tour $s \in S(\in)$ output: a local optimum $s \in S_{\pi}$
Improvement:=TRUE;
while Improvement is TRUE do
Improvement:=FALSE;
for $i=1$ to $n-1$ do for $j=i+1$ to n do
if $P[i]+1=P[j]$ or $P[j]+1=P[i]$ then continue if $P[i]+1 \geq n$ or $P[j]+1 \geq n$ then continue
$\Delta_{i j}=d\left(\pi_{P[i]}, \pi_{P[j]}\right)+d\left(\pi_{P[i]+1}, \pi_{P[j]+1}\right)+$ $-d\left(\pi_{P[i]}, \pi_{P[i]+1}\right)-d\left(\pi_{P[j]}, \pi_{P[j]+1}\right)$
if $\Delta_{i j}<0$ then
UpdateTour (s, i, j)
Improvement=TRUE

Summary: Local Search Algorithms

 (as in [Hoos, Stützle, 2005])For given problem instance π :

1. search space S_{π}
2. evaluation function $f_{\pi}: S \rightarrow \mathbf{R}$
3. neighborhood relation $\mathcal{N}_{\pi} \subseteq S_{\pi} \times S_{\pi}$
4. set of memory states M_{π}
5. initialization function init: $\left.\emptyset \rightarrow S_{\pi} \times M_{\pi}\right)$
6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$
7. termination predicate terminate : $S_{\pi} \times M_{\pi} \rightarrow\{\top, \perp\}$

Outline

1. GCP

CH for GCP
Code

Construction Heuristics

- sequential heuristics

1. choose a variable (vertex)
a) static order: random (ROS), largest degree first, smallest degree last
b) dynamic order: saturation degree (DSATUR) [Brélaz, 1979]
2. choose a value (color): greedy heuristic
```
Procedure ROS
RandomPermutation \(\pi\) (Vertices);
forall \(\mathbf{i}\) in \(1, \ldots, n\) do
    \(v:=\pi(i)\);
    select \(\min \{c: c\) not in saturated \([v]\}\);
    col \([v]:=c\);
    add \(c\) in saturated \([w]\) for all \(w\) adjacent \(v\);
```

$\mathcal{O}(n k+m) \rightsquigarrow \mathcal{O}\left(n^{2}\right)$

Procedure DSATUR

select vertex v uncolored with max degree;
while uncolored vertices do
select $\min \{c: c$ not in saturated $[v]\}$; col $[v]:=c$;
add c in saturated $[w]$ for all w adjacent v;
select uncolored v with max size of saturated [v];

$$
\mathcal{O}(n(n+k)+m) \rightsquigarrow \mathcal{O}\left(n^{2}\right)
$$

- partitioning heuristics
- recursive largest first (RLF) [Leighton, 1979] iteratively extract stable sets

Alternative form of pseudo-code

```
Procedure ROS
RandomPermutation }\pi\mathrm{ (Vertices);
forall i in 1,\ldots,n do
    v := = (i);
    selectMin {c:c not in saturated[v]} do
        col[v] := c;
        forall w in Vertices: adj[v,w] do
        saturated[w].insert(c);
```

```
Procedure DSATUR
RandomPermutation \(\pi\) (Vertices);
forall \(\mathbf{i}\) in \(1, \ldots, n\) do
    \(\mathrm{v}:=\pi(\mathrm{i}) ;\)
    selectMin \(\{\mathrm{c}: \mathrm{c}\) not in saturated \([\mathrm{v}]\}\) do
        col[v] := c;
        forall \(w\) in Vertices: \(\operatorname{adj}[v, w]\) do
        saturated[w].insert(c);
```


RLF [Leighton, 1979]

```
Procedure Recursive Largest First(G)
In G=(V,E): input graph;
Out k: upper bound on \chi(G);
Out c: a coloring c:V}\\K\mathrm{ of }G\mathrm{ ;
k\leftarrow0 while }|V|>0\mathrm{ do
    k\leftarrowk+1
    FindStableSet(V,E,k)
return k
```

/* Use an additional color */
$/^{*} G=(V, E)$ is reduced ${ }^{*} /$

RLF

Key idea: extract stable sets trying to maximize edges removed.

Procedure FindStableSet (G, k)
In $G=(V, E)$: input graph
In k : color for current stable set
Var P : set of potential vertices for stable set
Var U : set of vertices that cannot go in current stable set
$P \leftarrow V ; \quad U \leftarrow \emptyset$;
forall $v \in P$ do $d_{U}(v) \leftarrow 0 ; \quad /^{*}$ degree induced by $U^{* /}$
while P not empty do
select v in P with max d_{U};
move v from P to $C_{k} ; V \leftarrow V \backslash\{v\}$
forall $w \in \delta_{P}(v)$ do $\quad /^{*}$ neighbors of v in $P^{* /}$
move w from P to $U ; \quad E \leftarrow E \backslash\{v, w\}$
forall $u \in \delta_{P}(w)$ do

$\left\llcorner d_{U}(u) \leftarrow d_{U}(u)+1\right.$

$$
\mathcal{O}\left(m+n \Delta^{2}\right) \rightsquigarrow \mathcal{O}\left(n^{3}\right)
$$

Examples

```
import cotls;
include "loadDIMACS";
// int nv;
// int me;
// float alpha;
// bool adj[nv,nv];
range Vertices = 1..nv;
range Colors = 1..nv;
int nbc = Colors.getUp();
Solver<LS> m();
var{int} col[Vertices](m,Colors):= 1;
ConstraintSystem<LS> S(m);
forall (i in Vertices, j in Vertices: j>i && adj[i,j])
S.post(col[i] != col[j]);
S.close();
m.close();
// CONSTRUCTION HEURISTIC
set{int} dom[v in Vertices] = setof(c in Colors) true;
RandomPermutation perm(Vertices);
forall (i in 1..nv) {
    int v = perm.get();
    selectMin(c in dom[v])(c) {
        col[v] := c;
        forall(w in Vertices: adj[v,w])
        dom[w].delete(c);
    }
}
nbc=max(v in Vertices) col[v];
Colors = 1..nbc;
cout<<"Construction heuristic, done: "<<nbc<<<" colors"<< endl;
```

code1.java/png code3.cpp

References

Brélaz D. (1979). New methods to color the vertices of a graph. Communications of the ACM, 22(4), pp. 251-256.
Leighton F.T. (1979). A graph coloring algorithm for large scheduling problems. Journal of Research of the National Bureau of Standards, 84(6), pp. 489-506.

