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Examples

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ
for i = 1 to n− 1 do

for j = i+ 1 to n do
if P [i] + 1 = P [j] or P [j] + 1 = P [i] then continue
if P [i] + 1 ≥ n or P [j] + 1 ≥ n then continue
∆ij = d(πP [i], πP [j]) + d(πP [i]+1, πP [j]+1)+

−d(πP [i], πP [i]+1)− d(πP [j], πP [j]+1)

if ∆ij < 0 then
UpdateTour(s, i, j)

is it really?

2



Examples

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ
Improvement:=TRUE;
while Improvement is TRUE do

Improvement:=FALSE;
for i = 1 to n− 1 do

for j = i+ 1 to n do
if P [i] + 1 = P [j] or P [j] + 1 = P [i] then continue
if P [i] + 1 ≥ n or P [j] + 1 ≥ n then continue
∆ij = d(πP [i], πP [j]) + d(πP [i]+1, πP [j]+1)+

−d(πP [i], πP [i]+1)− d(πP [j], πP [j]+1)

if ∆ij < 0 then
UpdateTour(s, i, j)
Improvement=TRUE
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Summary: Local Search Algorithms
(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. evaluation function fπ : S → R

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}
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Outline

1. GCP
CH for GCP
Code
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Construction Heuristics

sequential heuristics
1. choose a variable (vertex)

a) static order: random (ROS),
largest degree first, smallest degree last

b) dynamic order: saturation degree (DSATUR) [Brélaz, 1979]

2. choose a value (color): greedy heuristic

Procedure ROS
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
select min{c : c not in saturated[v]};
col[v] := c;
add c in saturated[w] for all w adjacent v;

O(nk +m) O(n2)

Procedure DSATUR
select vertex v uncolored with max degree;
while uncolored vertices do

select min{c : c not in saturated[v]};
col[v] := c;
add c in saturated[w] for all w adjacent v;
select uncolored v with max size of

saturated[v];

O(n(n+ k) +m) O(n2)

partitioning heuristics
recursive largest first (RLF) [Leighton, 1979]
iteratively extract stable sets

11



Alternative form of pseudo-code

Procedure ROS
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
selectMin {c : c not in saturated[v]} do

col[v] := c;
forall w in Vertices: adj[v,w] do

saturated[w].insert(c);

Procedure DSATUR
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
selectMin {c : c not in saturated[v]} do

col[v] := c;
forall w in Vertices: adj[v,w] do

saturated[w].insert(c);

12



RLF [Leighton, 1979]

Procedure Recursive Largest First(G)
In G = (V,E) : input graph;
Out k : upper bound on χ(G);
Out c : a coloring c : V 7→ K of G;

k ← 0 while |V | > 0 do
k ← k + 1 /* Use an additional color */
FindStableSet(V,E, k) /* G = (V,E) is reduced */

return k

13



RLF

Key idea: extract stable sets trying to maximize edges removed.

Procedure FindStableSet(G, k)
In G = (V,E) : input graph
In k : color for current stable set
Var P : set of potential vertices for stable set
Var U : set of vertices that cannot go in current stable set

P ← V ; U ← ∅;
forall v ∈ P do dU (v)← 0; /* degree induced by U */
while P not empty do

select v in P with max dU ;
move v from P to Ck; V ← V \ {v}
forall w ∈ δP (v) do /* neighbors of v in P */

move w from P to U ; E ← E \ {v, w}
forall u ∈ δP (w) do

dU (u)← dU (u) + 1

O(m+ n∆2) O(n3)

U

CkP
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Examples� �
import cotls;
include "loadDIMACS";
// int nv;
// int me;
// float alpha;
// bool adj[nv,nv];
range Vertices = 1..nv;
range Colors = 1..nv;
int nbc = Colors.getUp();

Solver<LS> m();

var{int} col[Vertices](m,Colors) := 1;
ConstraintSystem<LS> S(m);

forall (i in Vertices, j in Vertices: j>i && adj[i,j])
S.post(col[i] != col[j]);
S.close();

m.close();

// CONSTRUCTION HEURISTIC
set{int} dom[v in Vertices] = setof(c in Colors) true;
RandomPermutation perm(Vertices);
forall (i in 1..nv) {

int v = perm.get();
selectMin(c in dom[v])(c) {

col[v] := c;
forall(w in Vertices: adj[v,w])

dom[w].delete(c);
}

}
nbc = max(v in Vertices) col[v];
Colors = 1..nbc;
cout<<"Construction heuristic, done: "<<nbc<<" colors"<< endl;� �
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code1.java/png code3.cpp
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