DM825 - Introduction to Machine Learning

Sheet 11, Spring 2013

Exercise 1 - Probability theory

Prove the following rule:

$$
p\left(x_{i} \mid x_{-i}\right)=\frac{p\left(x_{1}, \ldots, x_{N}\right)}{\int p\left(x_{1}, \ldots, x_{N}\right) d x_{i}}
$$

where $x_{-i}=\left\{x_{1}, \ldots, x_{N}\right\} \backslash x_{i}$.

Exercise 2 - Naive Bayes

Consider the binary classification problem of spam email in which a binary label $Y \in$ $\{0,1\}$ is to be predicted from a feature vector $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where $X_{i}=1$ if the word i is present in the email and 0 otherwise. Consider a naive Bayes model, in which the components X_{i} are assumed mutually conditionally independent given the class label Y.
a Draw a directed graphical model corresponding to the naive Bayes model.
b Find a mathematical expression for the posterior class probability $p(Y=1 \mid x)$, in terms of the prior class probability $p(Y=1)$ and the class-conditional densities $p\left(x_{i} \mid y\right)$.
c Make now explicit the hyperparameters of the Bernoulli distributions for Y and X_{i}. Call them, μ and θ_{i}, respectively. Assume a beta distribution for the prior of these hyperparameters and show how to learn the hyperparameters from a set of training data $\left(y^{j}, \vec{x}^{j}\right)_{j=1}^{m}$ using a Bayesian approach. Compare this solution with the one developed in class via maximum likelihood.

Exercise 3 - Directed Graphical Models

Consider the graph in Figure left.

- Write down the standard factorization for the given graph.
- For what pairs (i, j) does the statement X_{i} is independent of X_{j} hold? (Don't assume any conditioning in this part.)
- Suppose that we condition on $\left\{X_{2}, X_{9}\right\}$, shown shaded in the graph. What is the largest set A for which the statement X_{1} is conditionally independent of X_{A} given $\left\{X_{2}, X_{9}\right\}$ holds?
- What is the largest set B for which X_{8} is conditionally independent of X_{B} given $\left\{X_{2}, X_{9}\right\}$ holds?
- Suppose that I wanted to draw a sample from the marginal distribution $p\left(x_{5}\right)=$ $\operatorname{Pr}\left[X_{5}=x_{5}\right]$. (Don't assume that X_{2} and X_{9} are observed.) Describe an efficient algorithm to do so without actually computing the marginal.

Figure 1: A directed graph.

