DM825 - Introduction to Machine Learning

Sheet 14, Spring 2013

Exercise 1

Do exercises 1, 4, 5 from Exam 2010.

Exercise 2 - Tree based methods

Consider a data set comprising 400 data points from class \mathcal{C}_{1} and 400 data points from class \mathcal{C}_{2}. Suppose that a tree model A splits these into $(300,100)$ assigned to the first leaf node (predicting \mathcal{C}_{1} and $(100,300)$ assigned to the second leaf node (predicting \mathcal{C}_{2}, where (n, m) denotes that n points come from class \mathcal{C}_{1} and m points come from class \mathcal{C}_{2}. Similarly, suppose that a second tree model B splits them into $(200,400)$ and $(200,0)$, respectively. Evaluate the misclassification rates for the two trees and show that they are equal. Similarly, evaluate the pruning criterion for the cross-entropy case for the two trees.

Exercise 3 - Tree based methods

You are given the following data points: Negative: $(-1,-1)(2,1)(2,-1)$; Positive: $(-2,1)$ $(-1,1)(1,-1)$. The points are depicted in Figure 1.

1. Construct a decision tree using the greedy recursive bi-partitioning algorithm based on information gain described in class. Use both criteria the Gini index and the entropy. In the search for the split threshold θ discretize the continue scale of the two features and consider only values in $\{-1.5,0,1.5\}$ for f_{1} and $\{0\}$ for f_{2}. Represent graphically the tree constructed and draw the decision boundaries in the Figure 1. Table 1 might be useful for some computations

x	y	$-(x / y) \cdot \log (x / y)$	x	y	$-(x / y) \cdot \log (x / y)$
1	2	0.50	1	5	0.46
1	3	0.53	2	5	0.53
2	3	0.39	3	5	0.44
1	4	0.50	4	5	0.26
3	4	0.31			

Table 1: Numerical values for the computation of information gains.
2. Use the tree to predict the outcome for the new point $(1,1)$.

Exercise 4 - Nearest Neighbor

1. Draw the decision boundaries for 1-Nearest Neighbor on the Figure 1. Make it accurate enough so that it is possible to tell whether the integer-valued coordinate points in the diagram are on the boundary or, if not, which region they are in.
2. What class does 1 -NN predict for the new point: $(1,1)$.
3. What class does 3-NN predict for the new point: (1, 0).

Exercise 5 - Practical

Analyze by means of classification tree the data on spam email from the UCI repository. Use rpart from the rpart package and the ctree from the party package.

Exercise 6 - PCA

Using the iris data readily available in R use principle component analysis to identify two components and plot the data in these components. Can you classify the data at this stage?

Exercise 7 - Probability and Independence

A joint probability table for the binary variables A, B, and C is given below.

A / B	b_{1}	b_{2}
a_{1}	$(0.006,0.054)$	$(0.048,0.432)$
a_{2}	$(0.014,0.126)$	$(0.032,0.288)$

Table 2: Joint probability distribution $P(A, B, C)$

- Calculate $P(B, C)$ and $P(B)$.
- Are A and C independent given B ? (Remember to report the justification of your answer.)

Figure 1: The data points for classification.

