DM826 - Spring 2012
Modeling and Solving Constrained Optimization Problems

Exercises
 Set Variables SONET Problem

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

[Partly based on slides by Stefano Gualandi, Politecnico di Milano]

Sonet problem

Optical fiber network design

Sonet problem

Input: weighted undirected demand graph $G=(N, E ; d)$, where each node $u \in N$ represents a client and weighted edges $(u, v) \in E$ correspond to traffic demands of a pair of clients.

Two nodes can communicate, only if they join the same ring; nodes may join more than one ring. We must respect:

- maximum number of rings r
- maximum number of clients per ring a
- maximum bandwidth capacity of each ring c

Task: find a topology that minimizes the sum, over all rings, of the number of nodes that join each ring while clients' traffic demands are met.

Sonet problem

Sonet problem
A solution of the SONET problem is an assignment of rings to nodes and of capacity to demands such that

1. all demands of each client pairs are satisfied;
2. the ring traffic does not exceed the bandwidth capacity;
3. at most r rings are used;
4. at most a ADMs on each ring;
5. the total number of ADMs used is minimized.

Sonet: variables

- Set variable X_{i} represents the set of nodes assigned to ring i
- Set variable Y_{u} represents the set of rings assigned to node u
- Integer variable $Z_{i e}$ represents the amount of bandwidth assigned to demand pair e on ring i.

Sonet: model

$$
\begin{array}{ll}
\min & \sum_{i \in R}\left|X_{i}\right| \\
\text { s.t. } & \left|Y_{u} \cap Y_{v}\right| \geq 1 \\
& Z_{i e} \in\{0, d(e)\} \\
& Z_{i,(u, v)}>0 \Longleftrightarrow i \in\left(Y_{u} \cap Y_{v}\right), \\
& u \in X_{i} \Leftrightarrow i \in Y_{u}, \\
& \left|X_{i}\right| \leq a \\
& \sum_{e \in E} Z_{i e} \leq c \\
& X_{i} \preceq X_{j}
\end{array}
$$

$$
\begin{array}{r}
\forall(u, v) \in E, \\
\forall e \in E, \\
\forall i \in R,(u, v) \in E, \\
\forall \in R, u \in N, \\
\forall i \in R \\
\forall i \in R . \\
\forall i, j \in R: i<j .
\end{array}
$$

```
from numpy import
from gecode import *
Rings = range(4) # upper bound for amount of rings
Nodes = range(5) # amount of clients
demand = array([[0,1,0,1,1],
    [1,0,1,0,0],
    [0,1,0,0,1],
    [1,0,0,0,0],
    [1,0,1,0,0]])
capacity = [3,2,2,3] # capacity in nodes of possible rings
X = map(lambda r: m.setvar(intset(),0,len(Nodes),0,capacity[r]),Rings) #nodes for r
Y = m.setvars(len(Nodes),intset(),0,len(Rings),0,len(Rings)) # rings for }
# at least two nodes in each ring
for r in Rings:
    cardinality(X[r], IRT_NQ, 1) # implied constraint
for (n1,n2) in combinations(Nodes,2):
    IntVar z(intset(),0,4,1,len(Rings));
    if demand[n1,n2]==1:
        rel(Y[n1], SOT_INTER, Y[n2], SRT_SUP, z)
channel(X,Y)
IntVarArray z(len(Rings), )
for r in Rings:
    cardinality(X[r],z[r])
```

IntVar adm(0,len(Rings)*len(Nodes)
linear (z, IRT_EQ, adm)

Once a variable $\mathrm{X}[\mathrm{i}]$ has been chosen, we first try to include the node that has the most communication with the nodes already placed in ring i,

```
while (!and(i in Rings)(X[i].bound())) {
    selectMin (i in Rings: !X[i].bound())(X[i].getCardinalityVariable().getSize()) {
        set{int} S = X[i].getPossibleSet();
        set{int} R = X[i].getRequiredSet();
        Solver<CP> cp = X[i].getSolver();
        selectMax (e in S: !R.contains(e))(sum(n in R)(demand[e,n])) {
        try<cp> cp.requires(nodesInRing[i],e); | cp.excludes(nodesInRing[i],e);
}
```


References

