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Course Introduction
Modeling in MP and CPSchedule and Material

Schedule:
Monday 12.15-14
Wednesday 16.15-18
Thursday 16.15-18
Break in week 9!
Officially last lecture in Week 13, Thursday, 27th March, 2014

Communication tools

Public Course Webpage (Wp)
http://www.imada.sdu.dk/~marco/DM826/

In Blackboard (Bb):
Announcements
Documents (Photocopies)

Discussion board in Bb

Personal email

You are welcome to visit me in my office in working hours.
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Modeling in MP and CPEvaluation

Two obligatory assignments (50% of final grade)
Model
Implementation
Report (3 pages)

Third final assignment (50% of final grade)
Model
Implement
Report (Max 10 pages)
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Course Introduction
Modeling in MP and CPReferences

Main References:

B1 F. Rossi, P. van Beek and T. Walsh (ed.), Handbook of Constraint
Programming, Elsevier, 2006

B2a C. Schulte, G. Tack, M.Z. Lagerkvist, Modelling and Programming with
Gecode 2013

B2b MiniZinc tutorial

Photocopies (Bb)
Articles from the Webpage
Lecture slides
Assignments

Active participation
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Modeling in MP and CPSoftware

Under development:
http://www.minizinc.org/challenge2013/results2013.html

Here, we will use free and open-source software:

Gecode (C++) – MIT license

OR-tools (C++) – Apache license 2.0

Python vs MiniZinc – BSD-style license
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Course Introduction
Modeling in MP and CPComputational Models

Three main Computational Models to solve (combinatorial) constrained
optimization problems:

Mathematical Programming (LP, ILP, QP, SDP, ...)

Constraint Programming (CSP as a model, SAT as a very special case)

Local Search (... and Meta-heuristics)

Others? Dynamic programming, dedicated algorithms, satisfiability
modulo theory, etc.
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Modeling:

1. identify:
variables and domains
constraints
objective functions

that formulate the problem

2. express what in point 1) in a way that allows the solution by available
software
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Modeling in MP and CPVariables

In MILP: real and integer variables

In CP:

finite domain integer (including Booleans),

continuos with interval constraints

structured domains: finite sets, multisets, graphs, ...
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Course Introduction
Modeling in MP and CPConstraint Programming

In MILP we formulate problems as a set of linear inequalities

In CP we describe substructures (so-called global constraints) and
combine them with various combinators.

Substructures capture building blocks often (but not always)
comptuationally tractable by special-purpose algorithms

CP models can:
solved by the constraint engine
be linearized and solved by their MIP solvers;
be translated in CNF and sovled by SAT solvers;
be handled by local search

In MILP the solver is often seen as a black-box
In CP and LS solvers leave the user the task of programming the search.

CP = model + propagation + search
constraint propagation by domain filtering  inference
search = backtracking, branch and bound, local search
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Course Introduction
Modeling in MP and CPExample: Sudoku

How can you solve the following Sudoku?

4 3 8 2 5
6

1 9 4
9 4 7

6 8
1 2 3

8 2 5
5

3 4 9 7 1
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Course Introduction
Modeling in MP and CPSudoku: ILP model

Let yijt be equal to 1 if digit t appears in cell (i , j). Let N be the set
{1, . . . , 9}, and let Jkl be the set of cells (i , j) in the 3× 3 square in position
k, l . ∑

j∈N

yijt = 1, ∀i , t ∈ N,

∑
j∈N

yjit = 1, ∀i , t ∈ N,

∑
i,j∈Jkl

yijt = 1, ∀k, l = {1, 2, 3}, t ∈ N,

∑
t∈N

yijt = 1, ∀i , j ∈ N,

yi,j,aij = 1, ∀i , j ∈ given instance.
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Modeling in MP and CPSudoku: CP model

Xij ∈ N, ∀i , j ∈ N,
Xij = aij , ∀i , j ∈ given instance,
alldifferent([X1i , . . . ,X9i ]), ∀i ∈ N,
alldifferent([Xi1, . . . ,Xi9]), ∀i ∈ N,
alldifferent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.
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Course Introduction
Modeling in MP and CPSudoku: CP model (revisited)

Xij ∈ N, ∀i , j ∈ N,
Xij = at , ∀i , j ∈ given instance,
alldifferent([X1i , . . . ,X9i ]), ∀i ∈ N,
alldifferent([Xi1, . . . ,Xi9]), ∀i ∈ N,
alldifferent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.

Redundant Constraint:

∑
j∈N

Xij = 45, ∀i ∈ N,

∑
j∈N

Xji = 45, ∀i ∈ N,

∑
ij∈Jkl

Xij = 45, k, l ∈ {1, 2, 3}.
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Modeling in MP and CPHybrid Methods?

Strengths:

CP is excellent to explore highly constrained combinatorial spaces quickly
Math programming is particulary good at deriving lower bounds
LS is particualry good at derving upper bounds

How to combine them to get better “solvers”?

Exploiting OR algorithms for filtering
Exploiting LP (and SDP) relaxation into CP
Hybrid decompositions:

1. Logical Benders decomposition

2. Column generation

3. Large-scale neigbhrohood search

CP

ILP

LS
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Modeling in MP and CPIntegrated Modeling

Models interact with solution process hence models in CP and IP are
different.

To integrate one needs:

to know both sides
to have available a modelling language that allow integration
(python, C++, MiniZinc)

There are typcially alternative ways to formulate a problem. Some may yield
faster solutions.

Typical procedure:

begin with a strightforward model to solve a small problem instance
alter and refine the model while scaling up the instances to maintain
tractability
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Modeling in MP and CPLinear Programming

Linear Programming

Given A matrix A ∈ Rm×n and column vectors b ∈ Rm, c ∈ Rn.
Task Find a column vector x ∈ Rn such that Ax ≤ b and cT x is maximum,

decide that {x ∈ Rn | Ax ≤ b} is empty, or decide that for all α ∈ R
there is an x ∈ Rn with Ax ≤ b and cT x > α.

Theory vs. Practice

In theory the Simplex algorithm is exponential, in practice it works.

In theory the Ellipsoid algorithm is polynomial, in practice it is worse than
the Simplex.(Interior point methods are polynomial and competitive with the
Simplex.)
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Modeling in MP and CPInteger Programming

Integer Programming

Given A matrix A ∈ Zm×n and vectors b ∈ Zm, c ∈ Zn.
Task Find a vector x ∈ Zn such that Ax ≤ b and cx is maximum,

or decide that {x ∈ Zn | Ax ≤ b} = ∅,
or decide that sup{cx | x ∈ Zn, Ax ≤ b} =∞.

Theory vs. Practice

In theory, IP problems can be solved efficiently by exploiting (if you can find-
/approximate) the convex hull of the problem.
In practice, we heavily rely on branch&bound search tree algorithms, that solve
LP relaxations at every node.

Logical Statements: Frequently (but not always) the integer variables are re-
stricted to be in {0,1} representing Yes/No decisions.
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Modeling in MP and CPQuadratic Programming

Quadratic Programming

Given Matrices A,Qi ∈ Rn×n, with i = 0, . . . , q, and column vectors
ai , b, c ∈ Rn.

Task Find a column vector x ∈ Rn such that xTQix + aT
i x ≤ b and

xTQ0X + cT x is maximum,
or decide that {x ∈ Rn | xTQix + aT

i x ≤ b} is empty,
or decide that it is unbounded.

Theory vs. Practice

In theory, this is a richer modeling language (quadratic constraints and/or
objective functions).
In practice, we linearize all the time, relying on (most of the time linear) cutting
plane algorithms.

21



Course Introduction
Modeling in MP and CPIn Cplex

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/topic/ilog.odms.cplex.help/Content/

Optimization/Documentation/CPLEX/_pubskel/CPLEX486.html

Example
Quadratic programming (QP), quadratically-constrained programming
(QCP), mixed integer quadratic programming (MIQP), and mixed-integer
quadratically-constrained programming (MIQCP).
Conventionally, a quadratic program is formulated this way:

min cT x + 1/2xTQx (c1x1 + . . . cnxn + q11x1x1 + q12x1x2 + . . . qnnxnxn)

s.t. Ax ∼ b

aT
i x + xTQix ≤ ri for i = 1, ..., q

lb ≤ x ≤ ub

Q is a matrix of coefficients. That is, the elements Qjj are the coefficients of
the quadratic terms x2

j , and the elements Qij and Qji are summed to make
the coefficient of the term xixj .
The same for the Qi in the constraints
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The question whether a quadratic objective function is convex (or concave) is
equivalent to whether the matrix Q is positive semi-definite (or negative
semi-definite).

For convex QPs, Q must be positive semi-definite; that is, xTQx ≥ 0 for
every vector x , whether or not x is feasible.
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min x1 + 2x2 + 3x3 +
1
2
(−33x2

1 + 12x1x2 − 22x2
2 + 23x2x3 − 11x3)

− x1 + x2 + x3 ≤ 20
x1 − 3x2 + x3 ≤ 30

+ x2
1 + x2

2 + x2
3 ≤ 1

CPLEX Examples:
quadratic objective function: qpex1.py and qpex1.lp
quadratic constraints: qcpex1.py and qcpex1.lp

Gurobi Examples:
qp.py and qcp.py
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Modeling in MP and CPExample: Quadratic Assignment Problem

Given:
n units with a matrix F = [fij ] ∈ Rn×n of flows between them and
n locations with a matrix D = [duv ] ∈ Rn×n of distances

Task: Find the assignment σ of units to locations that minimizes the
sum of product between flows and distances, ie,

min
σ∈Σ

∑
i,j

fijdσ(i)σ(j)

Applications: hospital layout; keyboard layout
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Example: QAP

D =


0 4 3 2 1
4 0 3 2 1
3 3 0 2 1
2 2 2 0 1
1 1 1 1 0

 F =


0 1 2 3 4
1 0 2 3 4
2 2 0 3 4
3 3 3 0 4
4 4 4 4 0



The optimal solution is σ = (1, 2, 3, 4, 5), that is,
facility 1 is assigned to location 1,
facility 2 is assigned to location 2, etc.

The value of f (σ) is 100.
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Quadratic Programming Formulation

i1

i2

i3

i4

i5

u1

u2

u3

u4

u5

xiu ∈ [0; 1]

indices i , j for units and u, v for locations:
Quadratic 0-1 problem:

min
∑

i

∑
u

∑
j

∑
v

fijduvxiuxjv∑
i

xiu = 1 ∀u∑
u

xiu = 1 ∀i

xiu ∈ {0, 1}

Largest instances solvable exactly n = 30
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A possible linearization with yiujv = xiuxjv (Adams-Johnson model)

min
∑

i,u,j,v

auvbijyiujv∑
i

xiu = 1 ∀u∑
u

xui = 1 ∀i∑
v

yiujv = xiu ∀i , u, j∑
j

yiujv = xiu ∀i , u, v

yiujv = yjviu ∀i , u, j , v
xiu ≥ 0 ∀i , u

yiujv ≥ 0 ∀i , u, j , v

yijij = xij for all i and j ,
yiuiv = 0 for all i and u 6= v ,
and yiuju = 0 for all i 6= j
 n2 + n2(n − 1)/2 variables.

Constraints
2n(n−1)2−(n−1)(n−2), n ≥
3.
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Modeling in MP and CPIn practice

Modeling Languages (e.g., AMPL, Mosel, AIMMS, ZIMPL, MiniZinc,
OPL,...)

Write your problem as:

min{cTz + dTy | Az + By ≥ b, z ∈ Rn, y ∈ Z}

push the button solve, and ... cross your fingers!

Theory vs. Practice

In theory, plenty of optimization problem solved in this manner.
In practice, for many real-life discrete (optimization) problems this approach is
not suitable (typically, it does not scale well).
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Modeling in MP and CPThe case of Integer Programming

The problem with Integer Programming [Williams, 2010]

IP is essentially concerned with the intersection of two structures:
1. Linear inequalities giving rise to polytopes.
2. Lattices of integer points.

Mathematical and computational methods and results exist for both these
structures on their own. Problems arise in both the computation of optimal
solutions and the economic interpretation of the results.

Example:

How many times do we really have (an approximation of) the convex hull in
our integer problem?
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Williams H. (2010). The problem with integer programming. Tech. Rep. LSE0R
10-118, London School of Economics and Political Science.
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