
DM826 – Spring 2014

Modeling and Solving Constrained Optimization Problems

Lecture 10
Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Complete Search
Incomplete SearchSearch

Complete

backtracking

dynamic programming

Incomplete

local search

2

Complete Search
Incomplete SearchOutline

1. Complete Search

2. Incomplete Search

3

Complete Search
Incomplete SearchBacktracking: Terminology

backtracking: depth first search of a search tree

branching strategy: method to extend a node in the tree

node visited if generated by the algorithm

constraint propagation prunes subtrees

deadend: if the node does not lead to a solution

thrashing repeated exploration of failing subtree differing only in
assignments to variables irrelevant to the failure of the subtree.

4

Complete Search
Incomplete SearchSimple Backtracking

at level j : instantiation I = {x1 = a1, . . . , xj = aj}

branches: different choices for an unassigned variable: I ∪ {x = a}

branching constraints P = {b1, . . . , bj}, bi , 1 ≤ i ≤ j

P ∪ {b1
j+1}, . . . ,P ∪ {bk

j+1} extension of a node by mutually exclusive
branching constraints

(In this view, easy implementation of propagation: the branching constraints
are simply scheduled for propagation)

5

Complete Search
Incomplete SearchBranching strategies

Assume a variable order and a value order (e.g., lexicographic):

A. Generic branching with unary constraints:

1. Enumeration, d -way

x = 1 | x = 2 | . . .

2. Binary choice points, 2-way

x = 1 | x 6= 1

3. Domain splitting
x ≤ 3 | x > 3

 d -way can be simulated by 2-way with no loss of efficiency. While d -way
with optimla ordering of variable and values can be exponentially worse
than a 2-way

 2-way seem more efficient than d -way on the same models
6

Complete Search
Incomplete SearchBranching strategies

B. Problem specific:

Disjunctive scheduling (job-shop scheduling)
xi , xj starting times of activities, di their duration
on a shared resource: xi + dj ≤ xj or xj + dj ≤ xi

equivalent to introducing binary variables for order.

Zykov’s branching rule for graph coloring

7

Complete Search
Incomplete SearchConstraint propagation

constraint propagation performed at each node: mechanism to avoid
thrashing

typically best to enforce domain consistency but with some exceptions
(e.g., forward checking is best in SAT)

nogood constraints added after deadend is encountered
similar to caching or memoization techniques: record solution to
subproblems and reuse them instead of recomputing them.
Corresponds to values ruled out by higher order consistency which would
be too costly to check

8

Complete Search
Incomplete SearchNogood constraints

Definition (Nogood)

A nogood constraint is a set of assignemnts and branching constraints that is
not consistent with any solution.

Implicit constraints, their addition does not remove solutions. Goal: reduce
thrashing.

Rule out inconsistencies before they are encountered during search:

Add implied constraints by hand during modelling
Automatically add them by applying constraint propagation algorithms

 Rule out inconsitencies after they have been encountered
late for this node, since it has been already refuted, but it may
contribute to pruning in the futre.

9

Complete Search
Incomplete Search

E.g.: On 6-queens problem:
white nodes: all constraints with some
instantiated variables are satisfied
black nodes: one or more constraint
checks fail
shaded area explained later

– {x1 = 2, x2 = 5, x3 = 3} is a no good: post ¬{x1 = 2 ∧ x2 = 5 ∧ x3 = 3}
– Applying symmetry mapping (mirroring over x-axis): also
{x1 = 5, x2 = 2, x3 = 4} is a nogood
– (x2 = 5) =⇒ (x6 6= 1)

10

Complete Search
Incomplete SearchDiscovering nogoods

Let P = {b1 . . . , pj} be a deadended node (bi , 1 ≤ i ≤ j , is the
branching constraint posted at level i in the search tree).

J(P) jumpback nogood for P is defined recursively:
P is a leaf node. Let C be a constraint that is not consistent with p:

J(P) = {bi |vars(bi) ∩ vars(C) 6= ∅, 1 ≤ i ≤ j}

P is not a leaf node. Let {b1
j+1 . . . , p

k
j+1} be all possible extensions of P

attempted by the branching strategy, each of which has failed:

J(P) =
k⋃

i=1

(J(P ∪ {bi
j+1})− {bi

j+1})

Ex: P = {x1 = 2, x2 = 5, x3 = 3, x4 = 1, x5 = 4}, all extensions of x6 to P
fail:

J(P) = (J(P ∪ {x6 = 1})− {x6 = 1}) ∪ . . . ∪ (J(p ∪ {x6 = 6})− {x6 = 6})
= {x2 = 5} ∪ . . . ∪ {x3 = 3}
= {x1 = 2, x2 = 5, x3 = 3, x5 = 4}

11

Complete Search
Incomplete SearchBackjumping

standard backtracking: chronological backtracking: backjump to the
most recently instantiated variable

non-chronological backtracking ≡ backjumping or intelligent
backtracking:
retracts the closest branching constraint that bears responsibility.

Eg: jump back to the most recent variable that shares a constraint with
deadend variable.

Eg: P = {b1, . . . , bj} non-leaf deadend
J(P) ⊆ P jumpback nogood for P
largest i , 1 ≤ i ≤ j : bi ∈ J(P)
jumpback and retracts bi and all those posted after bi
and delete nogoods recorded after bi

12

Complete Search
Incomplete Search

E.g.: On 6-queens problem:

deadend after failing to extend
25314. Backjump associated is
{x1 = 2, x2 = 5, x3 = 3, x5 = 4}
Backjump to i = 5, retracts
x5 = 4 (here like chronological
backtr.)

deadend discovered for 2531.
Backjump nogood is
{x1 = 2, x2 = 5, x3 = 3}
backjump to i = 3, retracts
x3 = 3 skipp all the shaded
tree

(nogood used only to backjump
not for propagation, less memory
usage)

13

Complete Search
Incomplete SearchRestoration Service

What do we have at the nodes of the search tree?
A computational space:
1. Partial assignments of values to variables
2. Unassigned variables
3. Suspended propagators

How to restore when backtracking?

Trailing Changes to nodes are recorded such that they can be undone
later

Copying A copy of a node is created before the node is changed

Recomputation If needed, a node is recomputed from scratch

14

Complete Search
Incomplete SearchHeuristics for Backtracking

Decisions must be made on Variable-Value ordering:
optimal strategy if it visits the fewest number of nodes in the search tree.
Finding optimal ordering is hard

Possible goals
Minimize the underlying search space

Minimize expected depth of any branch

Minimize expected number of branches

Minimize size of search space explored by backtracking algorithm
(intractable to find “best” variable)

dynamic vs static strategy
In Gecode: Variable-Value Branching ch. 8 +
http://www.gecode.org/doc-latest/reference/group_
_TaskModelIntBranch.html

15

http://www.gecode.org/doc-latest/reference/group__TaskModelIntBranch.html
http://www.gecode.org/doc-latest/reference/group__TaskModelIntBranch.html

Complete Search
Incomplete SearchVariable ordering

dynamic heuristics:

dom: choose x that minimizes rem(x |P) the domain size remaining after
propagation of branching constraints P.
dom+ deg (# constraints that involve a variable still unassigned)
dom
wdeg weight incremented when a constraint is responsible for a deadend

min regret
difference between smallest and second smallest value still in the domain

structure guided var ordering:
instantiate first variables that decompose the constraint graph
graph separators: subset of vertices or edges that when removed
separates the graph into disjoint subcomponents

16

Complete Search
Incomplete SearchValue ordering

estimate number of solutions:
counting solutions to a problem with tree structure can be done in
polytime
reduce the graph to a tree by dropping constraints

if optimization constraints: reduced cost to rank values

17

Complete Search
Incomplete SearchVariants to best search

Limited Discrepancy search

Discrepancy: when the search does not follow the value ordering
heuristic and does not take the left most branch out of a node.

explored tree by iteratively increasing number of discrepancies, preferring
discrepancies near the root
(thus easier to recover from early mistakes)

Ex: ith iteration: visit all leaf nodes up to i discrepancies
i = 0, 1, . . . , k (if k ≥ n depth then alg is complete)

Interleaved depth first search
each subtree rooted at a branch is searched for a given time-slice using
depth-first.
If no solution found, search suspended, next branch active.
Upon suspending in the last the first again becomes active.
Similar idea in credit based.

18

Complete Search
Incomplete SearchRandomization in Search Tree

Dynamical selection of solution components
in construction or choice points in backtracking.

Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

do backtracking until distance from a deadend has exceeded a fixed
cutoff number, restart by reordering the variables

Randomization can also be used in incomplete search

(more next time)

19

Complete Search
Incomplete SearchOutline

1. Complete Search

2. Incomplete Search

20

Complete Search
Incomplete SearchIncomplete Search

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

21

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

Complete Search
Incomplete SearchIncomplete Search

Credit-based search

Key idea: important decisions are
at the top of the tree

Credit = backtracking steps

Credit distribution: one half at
the best child the other divided
among the other children.

When credits run out follow
deterministic best-search

In addition: allow limited
backtracking steps (eg, 5) at the
bottom

Control parameters: initial credit,
distribution of credit among the
children, amount of local
backtracking at bottom.

22

Complete Search
Incomplete SearchIncomplete Search

Limited Discrepancy Search (LDS)

Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

Control parameter: the number of
discrepancies

23

Complete Search
Incomplete SearchIncomplete Search

Barrier Search

Extension of LDS

Key idea: we may encounter
several, independent problems in
our heuristic choice. Each of
these problems can be overcome
locally with a limited amount of
backtracking.

At each barrier start LDS-based
backtracking

24

Complete Search
Incomplete SearchLocal Search for CSP [Hoos and Tsang, 2006]

Uses a complete-state formulation

Initial state: a value assigned to each variable (randomly)

Changes the value of one variable at a time

Evaluation of a state:
number of constraints violated or variables to change (see soft
constraints)

Min-conflict heuristic [Minton et al., 1992]:
pick one variable involved in a constraint violation at random
assign to it the best value

Run-time independent from problem size

25

Complete Search
Incomplete SearchReferences

Hoos H.H. and Tsang E. (2006). Local Search Methods, chap. 5. Elsevier.
Minton S., Johnston M., Philips A., and Laird P. (1992). Minimizing conflicts: A

heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58(1-3), pp. 161–205.

Rossi F., van Beek P., and Walsh T. (eds.) (2006). Handbook of Constraint
Programming. Elsevier.

Schulte C. and Carlsson M. (2006). Finite domain constraint programming
systems. In Rossi et al. [2006].

26

	Complete Search

