
DM826 – Spring 2014

Modeling and Solving Constrained Optimization Problems

Lecture 11
Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Obligatory Assignment 1

Your model should be clear and comprehensible, such that each of us can
understand and implement it without difficulty.

Write it in pseudo-code, as in the lecture slides and homeworks.
The instance data, the decision variables (even reifying Booleans) and
their domains, must be declared.
their semantics must be given in English/Danish, and every constraint
must be annotated with an English paraphrase.
You may use standard mathematical notation and logical notation (but
not programming-language-specific notation), such as (but not limited
to) the following:

M[i , j]
sum(i ∈ S)(f (i))
ForAlli ∈ S : c(i) quantified constraint
∧ or & or and
Avoid using full logic like ∨ (logical or), =⇒ (logically implies), or ⇐⇒
(is logically equivalent to) between two (quantified) constraints
do not use ∃i ∈ S : c(i) to express that there must exist at least one i in
set S such that the (quantified) constraint c(i) holds
nor apply ¬ (logical negation) to a (quantified) constraint.

2



Use the global constraints, as well as any others seen in the course
(contrary to full logic they enhance the possibility of propagation!)

Distinct({x1, . . . , xn})
Element(Sequencea1, . . . , an, x , y), that is ax = y .

GlobalCardinality({x1, . . . , xn}, [v1, . . . , vm], [`1, . . . , `m], [u1, . . . , um])
[x1, . . . , xn] ≤Lex [y1, . . . , yn]

Linear([a1, . . . , an], [x1, . . . , xn],R, d) that is

(
n∑

i=1

ai · xi

)
R d .

...

Write the linking constraints!!

Use different fonts for variables

Stability was a constraint not a soft objective

English not necessary

Comments ”?” means not understood but most likely there is an error

Why no space before parenthesis(there should be one!)?

Avoid whining for lack of time, if you had other ideas specify them to
details, “custom branching” does not say anything.

3



Search – Resume

Backtracking

Branching strategies

Nogood constraints

Backjumping

Restoration service
Gecode uses a hybrid of copying and batch recomputation, called
adaptive recomputation, which remembers a copy in the middle of the
path from the root (sec. 40.6)
more copying when a deadend encountered
c-d=8 recomputation commit distance (at most 8 recomputation
commits)
a-d=2 recomputation adaptation distance (only if path length n > ad a
copy is created)

Variable-Value heuristics (shared selections: Accumulated Failure Count
(sec. 8.5.2), Activity-based. Near to a value)

4



Van Hentenryck’s Videos

COMET code

Choose var that leaves more values for other variables

Value oriented decision (eg, perfect squares)

Weaker commitment, domain splitting, >,<
(eg, magic squares, car sequencing)
tends to be a better choice since fixing values less benefit from
propagation from other variables (Tip. 8.2)

Symmetry breaking vs heuristics

5



Overview

Random restarts

Implementation issues

Search in gecode-python

Filtering algorithms in Scheduling

6



Outline

1. Random Restart

7



Randomization in Search Tree

Ordering heuristics make mistakes (possibly early)  randomization and
restarts

Randomization of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

do backtracking until distance from a deadend has exceeded a fixed
cutoff number, restart by reordering the variables

8



Motivations

Definition (Las Vegas algorithms)

Las Vegas algorithms are randomized algorithms that always give the correct
answer when they terminate, but running time varies from one run to another
and is modeled as a random variable

9



Algorithm Survival Analysis

Run time distributions

T ∈ [0,∞] time to find a solution on an instance

F (t) = Pr{T ≤ t} F : [0,∞] 7→ [0, 1] cdf/RTD: Run Time Distribution

f (t) = dF (t)
dt pdf

S(t) = Pr{T > t} = 1− F (t) survival function

h(t) = lim∆t→0 Pr {t ≤ T < t + ∆t | T ≥ t}∆t hazard function

H(t) =
∫ t

0 h(s)ds h(s) f (t)
S(t) H(t) = − log S(t) cumulative hazrd

function

E [T ] =
∫∞
0 tf (t)dt =

∫ 1
0 tdF (t) =

∫∞
0 S(t)dt expected run time

10



Empirical Comparisons� �
> load("Data/r37.RData")
> head(R37)

time iter event case
1 101 185737 0 1
2 57 84850 1 1
3 1 568 1 1
4 51 94974 1 1
5 5 7017 1 1

> require(survival)
> t <− survfit(Surv(time, event) ~ case, data = R37, type = "kaplan-meier",
conf.type = "plain", conf.int = 0.95, se.fit = T)
> plot(t, conf.int = F, xlab = "Time to find a solution", col = c("grey50", "black"), lty = c

(1, 1), ylab = "ecdf", fun = "event", ylim = c(0,1))� �

0 20 40 60 80 100

0.
0

0.
4

0.
8

Time to find a solution

ec
df

11



Heavy Tails

F (t)→t→∞ 1− C t−α

(Pareto like distr.)

In practice, this means that

most runs are relatively short, but the remaining few can take a very
long time.

Depending on C , α, the mean of a heavy-tailed distribution can be finite
or not, while higher moments are always infinite.

the length of a single run depends on the order with which randomized
backtracking assigns values to the variables. [?]
In some runs, backtracking has to search very deep branches in the tree
of possible solutions before finding a contradiction.
The same instance may be very easy if solved with a different random
reordering of the variables.

This is an example phenomenon which is difficult to study based on
simple statistics, as mean and variance.

12



Characterization of Run-time
Heavy Tails

? analyze the mean computational cost to find a solution on a single instance

On the left, the observed behavior calculated over an increasing number of
runs.
On the right, the case of data drawn from normal or gamma distributions

The use of the median instead of the mean is recommended
The existence of the moments (e.g., mean, variance) is determined by
the tails behavior: a case like the left one arises in presence of long tails

13



Why this happens?
Because heuristics make mistakes which require the backtracking algorithm
to explore a large subtree with no solutions.

Value mistake: a node in the search tree that us a nogood but the
parent of the node is not a nogood.

Backdoor mistake: a selection of a variable that is not in a minimal
backdoor, when such a variable is available to be chosen.
Backdoors are set of variables that if instantiated make the subproblem
much easier to solve (polynomially)

14



Characterization of runtime

Parametric models used in the analysis of run-times to
exploit the properties of the model (eg, the character of tails and completion
rate)

Procedure:

choose a model
apply fitting method
maximum likelihood estimation method:

max
θ∈Θ

log
n∏

i=1

p(Xi , θ)

test the model

15



Parametric models

The distributions used are [??]:

0 1 2 3 4

0.0

0.5

1.0

1.5

Exponential

x

f(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

Weibull

x

f(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

Log−normal

x

f(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

Gamma

x

f(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Exponential

x

h(
x)

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Weibull

x

h(
x)

0 1 2 3 4 5

0

1

2

3

4

5

6

x

h(
x)

Log−normal

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gamma

x

h(
x)

16



Characterization of Run-time

Motivations for these distributions:

qualitative information on the completion rate (= hazard function)
empirical good fitting

To check whether a parametric family of models is reasonable the idea is to
make plots that should be linear. Departures from linearity of the data can be
easily appreciated by eye.

Example: for an exponential distribution:

log S(t) = −λt S(t) = 1− F (t) is the survivor function

 the plot of log S(t) against t should be linear.

Similarly, for the Weibull the cumulative hazard function is linear on a log-log
plot

 heavy tail if S(t) in log-log plot is linear with slope −α

17



Characterization of Run-time
Heavy Tails

Graphical check using a log-log plot:

heavy tail distributions approximate linear decay,
exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the cutoff
time is however not trivial.

18



Extreme Value Statistics

Extreme value statistics focuses on characteristics related to the tails of
a distribution function

1. extreme quantiles (e.g., minima)
2. indices describing tail decay

‘Classical’ statistical theory: analysis of means.
Central limit theorem: X1, . . . ,Xn i.i.d. with FX

√
n

X̄ − µ√
Var(X )

D−→ N(0, 1), as n→∞

Heavy tailed distributions: mean and/or variance may not be finite!

20



Extreme Value Statistics

Extreme values theory

X1,X2, . . . ,Xn i.i.d. FX

Ascending order statistics X (1)
n ≤ . . . ≤ X

(n)
n

For the minimum X
(1)
n it is F

X
(1)
n

= 1− [1− F
(1)
X ]n but not very useful in

practice as FX unknown
Theorem of [Fisher and Tippett, 1928]:
“almost always” the normalized extreme tends in distribution to a
generalized extreme distribution (GEV) as n→∞.

In practice, the distribution of extremes is approximated by a GEV:

F
X

(1)
n

(x) ∼

{
exp(−1(1− γ x−µ

σ )−1/γ , 1− γ x−µ
σ > 0, γ 6= 0

exp(− exp( x−µ
σ )), x ∈ R, γ = 0

Parameters estimated by simulation by repeatedly sampling k values
X1n, . . . ,Xkn, taking the extremes X (1)

kn , and fitting the distribution.
γ determines the type of distribution: Weibull, Fréchet, Gumbel, ...

21



Extreme Value Statistics

Tail theory

Work with data exceeding a high threshold.
Conditional distribution of exceedances over threshold τ

1− Fτ (y) = P(X − τ > y | X > τ) =
P(X > τ + y)

P(X > τ)

If the distribution of extremes tends to GEV distribution then there exist
a Pareto-type function such that for some γ > 0

1− FX (x) = x−
1
γ `F (x), x > 0,

with `F (x) a slowly varying function at infinity.

In practice, fit a function Cx−
1
γ to the exceedances:

Yj = Xi − τ , provided Xi > τ , j = 1, . . . ,Nτ .
γ determines the nature of the tail

22



Characterization of Run-time
Heavy Tails

The values estimated for γ give indication on the tails:

γ > 1: long tails hyperbolic decay (the completion rate decreases with t)
and mean not finite
γ < 1: tails exhibit exponential decay

Graphical check using a log-log plot:

heavy tail distributions approximate linear decay,
exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the cutoff
time is however not trivial.

23



Randomization

Randomize the variable ordering

Randomize tie breaking

ranking variables within a small factor of the best variable and choosing
one at random

choose a variable with probability proportional to heuristic weight of the
variable

pick one at random from a set of heuristics to use for the selection

randomize value ordering

random backwards jump in search space upon backtracking (makes it
incomplete)

Wanted: enough different decisions near the top of the search tree
24



Restart strategies

Restart strategy: execute a sequence of runs of a randomized algorithm,
to solve a single problem instance, stopping the r -th run after a time
τ(r) if no solution is found, and restarting the algorithm with a different
random seed

defined by a function τ : N→ R+ producing the sequence of thresholds
τ(r) employed.

origins in the field of communication networks
(Fayolle et al., 1978) derive the optimal timeout for a simple “send and
wait” communication protocol, maximizing the transmission rate.

It can be proved that restart is beneficial under two conditions: if the
survival function decreases less fast than an exponential, and if the RTD
is improper.

25



? study Las Vegas algorithms and prove that:

if F (t) is known:
the optimal restart strategy is uniform, i.e., τ(r) = τ , ie,
~τ = (τ, τ, τ, τ, . . .).
Optimal cutoff time ~τ∗ can be evaluated minimizing the expected value
of the total run-time Tτ :

E{T~τ} =
τ −

∫ τ
0 F (t)dt

F (τ)

(of course F (t) is not known in practice)

26



if F (t) is not known, ? suggested a universal, non-uniform restart
strategy, whose cutoff sequence is composed of powers of 2:

~τuniv = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .)

τuniv (r) :=

{
2j−1 if r = 2j − 1;

τ(r − 2j−1 + 1) if 2j−1 ≤ r < 2j − 1

(everytime a pair of runs of a given length is completed a run of twice
that length is execute ≡ when 2j−1 is used twice, 2j is the next)

 For all distributions F (t) the performance of ~τuniv is bounded with high
probability with respect to EF{T~τ∗}:

EF{T~τuniv } ≤ 192EF{T~τ∗}(log EF{T~τ∗}+ 5)

and the tail decays exponentially. (Note that the result is asymptotic)
 It is the best performance it can be achieved by any universal strategy

up to a constant factor
27



Deciding the Restart Strategy in Practice
What counts for primitive operation?

number of deadends

distance from a deadend (keep nogoods discovered)

number of backtracks

number of nodes visited

For fixed cutoff, which cutoff value?
instance dependent: hence trial and error

safer to make larger than too small

in practice the universal strategy seems slow as it increases too slowly,
hence often scaled version: ~τuniv = (s, s, 2s, . . .)

Toby Walsh proposes a geometric progression ~τ g = (1, s, s2, . . .) for
1 < s < 2. Performs well in practice but no guarantees.

Kautz et al. propose a Bayesian model to predict when run will go long
and restart it

optimization within a given deadline also possible
28


	Random Restart

