DM826 – Spring 2014 Modeling and Solving Constrained Optimization Problems

> Lecture 5 Constraint Propagation and Local Consistency

> > Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Definitions

2. Local Consistency

Reasoning with Constraints

Constraint Propagation, aka:

- constraint relaxation
- filtering algorithms
- narrowing algorithms
- constraint inference
- simplification algorithms
- label inference
- local consistency enforcing
- rules iteration
- proof rules

Local Consistency define properties that the constraint problem must satisfy *after* constraint propagation

Rules iteration defines properties on the process of propagation itself, that is is kind and order of operations of reduction applied to the problem

Finite domains \rightsquigarrow w.l.g. $D \subseteq \mathbf{Z}$

Constraint C: relation on a (ordered) subsequence of variables

- $X(C) = (x_{i_1}, \dots, x_{i_{|X(C)|}})$ is the scheme or scope
- |X(C)| is the arity of C (unary/binary/non-binary)
- $C \subseteq \mathbf{Z}^{|X(C)|}$ containing combinations of valid values (or tuples) $\tau \in \mathbf{Z}^{|X(C)|}$
- constraint check: testing whether a τ satisfies C
- C: a *t*-tuple of constraints $C = (C_1, \ldots, C_t)$
- expression
 - extensional: specifies satisfying tuples (aka table or extensional via DFA or TupleSet in gecode).

eg. $c(x_1, x_2) = \{(2, 2), (2, 3), (3, 2), (3, 3)\}$

• intensional: specifies the characteristic function. eg. alldiff(x₁, x₂, x₃)

CSP

Input:

- Variables $X = (x_1, \ldots, x_n)$
- Domain Expression $\mathcal{DE} = \{x_1 \in D(x_1), \dots, x_n \in D(x_n)\}$

a constrained satisfaction problem (CSP) is

 $\mathcal{P} = \langle X, \mathcal{DE}, \mathcal{C} \rangle$

C finite set of constraints each on a subsequence of X. $C \in C$ on $Y = (y_1, \ldots, y_k)$ is $C \subseteq D(y_1) \times \ldots \times D(y_k)$

 $(v_1, \ldots, v_n) \in D(x_1) \times \ldots \times D(x_n)$ is a solution of \mathcal{P} if for each constraint $C_i \in \mathcal{C}$ on $x_{i_1} \ldots, x_{i_m}$ it is

 $(v_{i_1},\ldots,v_{i_m})\in C_i$

CSP normalized: iff two different constraints do not involve exactly the same vars CSP binary iff for all $C_i \in C$, |X(C)| = 2

Given a tuple τ on a sequence Y of variables and $W \subseteq Y$,

- $\tau[W]$ is the restriction of τ to variables in W (ordered accordingly)
- $\tau[x_i]$ is the value of x_i in τ
- if X(C) = X(C') and $C \subseteq C'$ then for all $\tau \in C$ the reordering of τ according to X(C') satisfies C'.

Example

 $\begin{array}{ll} C(x_1, x_2, x_3): & x_1 + x_2 = x_3 \\ C'(x_1, x_2, x_3): & x_1 + x_2 \leq x_3 \end{array} \qquad \qquad C \subseteq C'$

- Given $Y \subseteq X(C)$, $\pi_Y(C)$ denotes the projection of C on Y. It contains tuples on Y that can be extended to a tuple on X(C) satisfying C.
- given $X(C_1) = X(C_2)$, the intersection $C_1 \cap C_2$ contains the tuples τ that satisfy both C_1 and C_2
- join of $\{C_1 \dots C_k\}$ is the relation with scheme $\bigcup_{i=1}^k X(C_i)$ that contains tuples such that $\tau[X(C_i)] \in C_i$ for all $1 \le i \le k$.

Example

 π_{x_1}

$$\mathcal{P} = \langle X = (x_1, x_2, x_3, x_4), \mathcal{DE} = \{D(x_i) = \{1..5\}, \forall i\}, \\ \mathcal{C} = \{C_1 \equiv \texttt{alldiff}(x_1, x_2, x_3), C_2 \equiv x_1 \le x_2 \le x_3, C_3 \equiv x_4 \ge 2x_2\} \rangle$$

$$x_2(C_1) \equiv (x_1 \neq x_2) \\ \cap C_2 \equiv (x_1 < x_2 < x_3)$$

Given $\mathcal{P} = \langle X, \mathcal{DE}, \mathcal{C} \rangle$ the instantiation *I* is a tuple on $Y = (x_1, \dots, x_k) \subseteq X$: $((x_1, v_1), \dots, (x_k, v_k))$

- I on Y is valid iff $\forall x_i \in Y$, $I[x_i] \in D(x_i)$
- I on Y is locally consistent on Y iff it is valid and for all $C \in C$ with $X(C) \subseteq Y$, I[X(C)] satisfies C
- a solution to \mathcal{P} is an instantiation I on $X(\mathcal{C})$ which is locally consistent
- I on Y is globally consistent if it can be extended to a solution, i.e., there exists s ∈ sol(P) with I = s[Y]

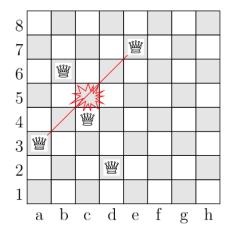
Example

$$\begin{aligned} \mathcal{P} &= \langle X = (x_1, x_2, x_3, x_4), \mathcal{DE} = \{ D(x_i) = \{1..5\}, \forall i \}, \\ \mathcal{C} &= \{ C_1 \equiv \texttt{alldiff}(x_1, x_2, x_3), C_2 \equiv x_1 \leq x_2 \leq x_3, C_3 \equiv x_4 \geq 2x_2 \} \rangle \end{aligned}$$

 $\begin{aligned} &\pi_{x_1,x_2}(C_1) \equiv (x_1 \neq x_2) \\ &I_1 = ((x_1,1), (x_2,2), (x_4,7)) \text{ is not valid} \\ &I_2 = ((x_1,1), (x_2,1), (x_4,3)) \text{ is local consistent since } C_3 \text{ only one with } X(C_3) \subseteq Y \\ &\text{and } I_2[X(C_3)] \text{ satisfies } C_3 \\ &I_2 \text{ is not global consistent: } sol(\mathcal{P}) = \{(1,2,3,4), (1,2,3,5)\} \end{aligned}$

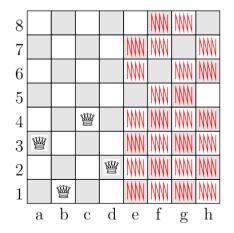
- An instantiation I on \mathcal{P} is globally inconsistent if it cannot be extended to a solution of \mathcal{P} , globally consistent otherwise.
- A globally inconsistent instantiation is also called a (standard) nogood.
- Remark: A locally inconsistent instantiation is a nogood. The reverse is not necessarily true

Example



 $\{(x_a,3),(x_b,6),(x_c,4),(x_d,2),(x_e,7)\}$ is locally inconsistent we this is a nogood.

Example



 $\{(x_a,3),(x_b,1),(x_c,4),(x_d,2)\}$ is globally inconsistent we this is a nogood.

CSP solved by extending partial instantiations to global consistent ones and backtracking at local inconsitencies \rightsquigarrow is NP-complete!

Idea: make the problem more explicit (tighter)

 $\begin{array}{l} \mathcal{P}' \text{ is a tightening of } \mathcal{P} \text{ if} \\ X_{\mathcal{P}'} = X_{\mathcal{P}}, \quad \mathcal{DE}_{\mathcal{P}'} \subseteq \mathcal{DE}, \quad \forall C \in \mathcal{C}, \exists C' \in \mathcal{C}', X(C') = X(C) \text{ and } C' \subseteq C. \\ \text{It implies that, any instantiation } I \text{ on } Y \subseteq X_{\mathcal{P}} \text{ locally inconsistent for } \mathcal{P} \text{ is} \\ \text{locally inconsistent for } \mathcal{P}'. \end{array}$

Example

$$\mathcal{P} = \langle X = (x_1, x_2, x_3), \mathcal{DE} = \{ D(x_i) = [1..4], \forall i \}, \\ \mathcal{C} = \{ C_1 \equiv x_1 < x_2, C_2 \equiv x_2 < x_3, \\ C_3 \equiv \{ (111), (123), (222), (333), (234) \} \} \rangle \\ \mathcal{P}' = \langle X, \mathcal{DE}, \mathcal{C}' \rangle, \mathcal{C}' = \{ C_1, C_2, C_3' \equiv \{ (123) \} \} \rangle$$

 \mathcal{P}' is a tightening of \mathcal{P} : $X_{\mathcal{P}'} = X_{\mathcal{P}}$, $\mathcal{DE}_{\mathcal{P}'} = \mathcal{DE}$ and $C_1 = C'_1, C_2 = C'_2, X(C_3) = X(C'_3), C'_3 \subset C_3$. All locally inconsistent instantiations on $Y \subseteq X_{\mathcal{P}}$ for \mathcal{P} are locally inconsistent for \mathcal{P}' . However not all solutions are preserved.

Example

$$\mathcal{P} = \langle X = (x_1, x_2, x_3), \mathcal{DE} = \{ D(x_i) = [1..4], \forall i \}, \\ \mathcal{C} = \{ C_1 \equiv x_1 < x_2, C_2 \equiv x_2 < x_3, C_3 \equiv \{ (111), (123), (222), (333) \} \} \rangle$$

$$\mathcal{P}' = \langle X, \mathcal{DE}, \mathcal{C}' \rangle, \mathcal{C}' = \{C_1, C_2, C'_3 \equiv \{(123), (231), (312)\}\}$$

For any tuple τ on X(C) that does not satisfy C there exists a constraint C'in C' with $X(C') \subseteq X(C)$ such that $\tau[X(C')] \notin C'$ (τ local inconsistent). Hence $\mathcal{P}' \preceq \mathcal{P}$. But also $\mathcal{P} \preceq \mathcal{P}'$. \mathcal{P}' is not a tightening of \mathcal{P} : $C'_3 \not\subseteq$ of any $C \in C$ They are no-good equivalent.

 $\mathcal{S}_{\mathcal{P}}$ is the space of all tightening for $\mathcal P$

We are interested in the tightenings that preserve the set of solutions $(sol(\mathcal{P}') = sol(\mathcal{P}))$ whose space is denoted $\mathcal{S}_{\mathcal{P}}^{sol}$ and among them the smallest

 $\mathcal{P}^* \in \mathcal{S}_{\mathcal{P}}^{sol}$ is global consistent if any instantiation I on $Y \subseteq X$ which is locally consistent in \mathcal{P}^* can be extended to a solution of \mathcal{P} .

Computing \mathcal{P}^* is exponential in time and space \rightsquigarrow search a close \mathcal{P} in polynomial time and space \rightsquigarrow constraint propagation

- Define a property Φ that states necessary conditions on instantiations that enter in the definition of local consistency
- Reduction rules: sufficient conditions to rule out values (or instantiations) that will not be part of a solution (defined through a consistency property φ)
 Rules iteration: set of reduction rules for each constraint that tighten the problem

In general, we reach a \mathcal{P}' that is Φ consistent by constraint propagation:

- \bullet tighten \mathcal{DE}
- tighten C, ex: $x_1 + x_2 \leq x_3 \rightsquigarrow x_1 + x_2 = x_3$
- \bullet add \emph{C} to \emph{C}

Focus on domain-based tightenings

Domain-based tightenings

The space $S_{\mathcal{P}}$ of domain-based tightenings of \mathcal{P} is the set of problems $\mathcal{P}' = \langle X', \mathcal{D}\mathcal{E}', \mathcal{C}' \rangle$ such that $X_{\mathcal{P}'} = X_{\mathcal{P}}, \quad \mathcal{D}\mathcal{E}_{\mathcal{P}'} \subseteq \mathcal{D}\mathcal{E}, \quad \mathcal{C}' = \mathcal{C}$

Task:

Finding a tightening \mathcal{P}^* in $\mathcal{S}_{\mathcal{P}}^{sol} \subseteq \mathcal{S}_{\mathcal{P}}$ (the set that contains all problems that preserve the solutions of \mathcal{P}) such that: forall $x_i \in X_{\mathcal{P}}$, $D_{\mathcal{P}*}(x_i)$ contains only values that belong to a solution itself, i.e., $D_{\mathcal{P}*}(x_i) = \pi_{\{x_i\}}(\operatorname{sol}(\mathcal{P}))$

It is clearly NP-hard since it corresponds to solving $\mathcal P$ itself.

• Reduction rules:

 $D(x_i) \leftarrow D(x_i) \cap \{v_i | D(x_1) \times D(x_j-1) \times \{v_i\} \times \ldots D(x_j+1) \times \ldots D(x_k) \cap C \neq \emptyset\}$

(the rule is parameterised by a variable x_i and a constraint C) Rules iteration (for all i) It is clearly NP-hard since it corresponds to solving $\mathcal P$ itself. \rightsquigarrow hence polynomial reduction rules to approximate $\mathcal P^*$

Apply rules iteration for each constraint. Domain-based reduction rules are also called propagators.

Example

 $C = (|x_1 - x_2| = k)$ Propagator: $D(x_1) \leftarrow D(x_1) \cap [\min_D(x_2) - k..\max_D(x_2) + k]$

Rather than defining rules we define Φ : e.g., unary, arc, path, k-consistency

Domain-based local consistency

Domain-based local consistency property Φ specifies a necessary condition on values to belong to solutions. We restrict to those stable under union.

A domain-based property Φ is stable under union iff for any Φ -consistent problem $\mathcal{P}_1 = (X, \mathcal{DE}, \mathcal{C})$ and $\mathcal{P}_2 = (X, \mathcal{DE}, \mathcal{C})$ the problem $\mathcal{P}' = (X, \mathcal{DE}_1 \cup \mathcal{DE}_2, \mathcal{C})$ is Φ -consistent.

Example

 Φ for each constraint *C* and variable $x_i \in X(C)$, at least half of the values in $D(x_i)$ belong to a valid tuple satisfying *C*.

 $\mathcal{P} = \langle X = (x_1, x_2), \mathcal{DE} = \{D_1(x_1) = \{1, 2\}, D_1(x_2) = \{2\}\}, C \equiv \{x_1 = x_2\} \rangle$ $\mathcal{P} = \langle X = (x_1, x_2), \mathcal{DE} = \{D_2(x_1) = \{2, 3\}, D_2(x_2) = \{2\}\}, C \equiv \{x_1 = x_2\} \rangle$

Both are Φ consistent but they are not stable under union.

Domain-based tightenings

Note: Not all Φ -consistent tightenings preserve the solutions We search for the Φ -closure $\Phi(\mathcal{P})$ (the union of all $\mathcal{P}' \in S_{\mathcal{P}} \Phi$ -consistent)

- \equiv enforcing Φ consistency
- $\operatorname{sol}(\phi(\mathcal{P})) = \operatorname{sol}(\mathcal{P})$

Example

$$\mathcal{P} = \langle X = (x_1, x_2, x_3, x_4), \mathcal{DE} = \{ D(x_i) = \{1, 2\}, \forall i \}, \\ \mathcal{C} = \{ C_1 \equiv x_1 \le x_2, C_2 \equiv x_2 \le x_3, C_3 \equiv x_1 \neq x_3 \} \rangle$$

 Φ all values for all variables can be extended consistently to a second variable

$$\begin{aligned} \mathcal{P}' = \langle X = (x_1, x_2, x_3, x_4), \mathcal{DE} = \{ D(x_1) = 1, D(x_2) = 1, D(x_3) = 2, \forall i \}, \\ \mathcal{C} = \{ C_1 \equiv x_1 \le x_2, C_2 \equiv x_2 \le x_3, C_3 \equiv x_1 \ne x_3 \} \end{aligned}$$

 \mathcal{P}' is consistent but it does not contain (1, 2, 2) which is in $\operatorname{sol}(\mathcal{P})$ $\Phi(\mathcal{P}): \langle X, \mathcal{DE}_{\Phi}, \mathcal{C} \rangle$ with $D_{\Phi}(x_1) = 1, D_{\Phi}(x_2) = \{1, 2\}, D_{\Phi}(x_3) = 2$ A set has closure under an operation if performance of that operation on members of the set always produces a member of the same set.

A set is said to be closed under a collection of operations if it is closed under each of the operations individually.

Proposition (Fixed Point): If a domain based consistency property Φ is stable under union, then for any \mathcal{P} , the \mathcal{P}' with $\mathcal{DE}_{\mathcal{P}'}$ obtained by iteratively removing values that do not satisfy Φ until no such value exists is the Φ -closure of \mathcal{P} .

Contrary to \mathcal{P}^* , $\Phi(\mathcal{P})$ can be computed by a greedy algorithm:

Corollary If a domain-based consistency property Φ is polynomial to check, finding $\Phi(\mathcal{P})$ is polynomial as well.

enforcing Φ consistency \equiv finding closure $\Phi(\mathcal{P})$

Possible to define a partial order

(For *a*, *b*, elements of a poset *P*, if $a \le b$ or $b \le a$, then *a* and *b* are comparable. Otherwise they are incomparable)

That is, Φ_1 is at least as strong as another Φ_2 if for any $\mathcal{P}: \Phi_1(\mathcal{P}) \leq \Phi_2(\mathcal{P})$, ie, $X_{\Phi_1(\mathcal{P})} = X_{\Phi_2(\mathcal{P})}, \quad \mathcal{DE}_{\Phi_1(\mathcal{P})} \subseteq \mathcal{DE}_{\Phi_2(\mathcal{P})}, \quad \mathcal{C}_{\Phi_1(\mathcal{P})} = \mathcal{C}_{\Phi_2(\mathcal{P})}$ (any instantiation I on $Y \subseteq X_{\Phi_2(\mathcal{P})}$ locally inconsistent in $\Phi_2(\mathcal{P})$ is locally inconsistent in $\Phi_1(\mathcal{P})$)

Outline

1. Definitions

2. Local Consistency

Node Consistency

We call a CSP node consistent if for every variable x every unary constraint on x coincides with the domain of x.

Example

- ⟨C, x₁ ≥ 0,..., x_n ≥ 0; x₁ ∈ N,..., x_n ∈ N⟩ and C does not contain unary constraints node consistent
- $\langle C, x_1 \ge 0, \dots, x_n \ge 0; x_1 \in \mathbb{N}, \dots, x_n \in \mathbb{Z} \rangle$ and C does not contain unary constraints not node consistent

A CSP is node consistent iff it is closed under the applications of the Node Consistency rule (propagator):

 $\frac{\langle C; x \in D \rangle}{\langle C; x \in C \cap D \rangle}$

(the rule is parameterised by a variable x and a unary constraint C)

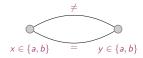
Arc Consistency

Definitions Local Consistency

Arc consistency: every value in a domain is consistent with every binary constraint.

- C = c(x, y) with DE = {D(x), D(y)} is arc consistent iff
 ∀a ∈ D(x) there exists b ∈ D(y) such that (a, b) ∈ C
 ∀b ∈ D(y) there exists a ∈ D(x) such that (a, b) ∈ C
- $\bullet \ \mathcal{P}$ is arc consistent iff it is AC for all its binary constraints

In general arc consistency does not imply global consistency. An arc consistent but inconsistent CSP:



A consistent but not arc consistent CSP:

Generalized Arc Consistency (GAC)

Given arbitrary (non-normalized, non-binary) \mathcal{P} , $C \in \mathcal{C}$, $x_i \in X(C)$

(Value) $v \in D(x_i)$ is consistent with C in \mathcal{DE} iff \exists a valid tuple τ for C: $v_i = \tau[x_i]$. τ is called support for (x_i, v_i)

(Variable) \mathcal{DE} is GAC on C for x_i iff all values in $D(x_i)$ are consistent with C in \mathcal{DE} (i.e., $D(x_i) \subseteq \pi_{\{x_i\}}(C \cap \pi_{\{X(C)\}}(\mathcal{DE})))$

(Problem) \mathcal{P} is GAC iff \mathcal{DE} is GAC for all v in X on all $C \in \mathcal{C}$

 \mathcal{P} is arc inconsistent iff the only domain tighter than \mathcal{DE} which is GAC for all variables on all constraints is the empty set.

(aka, hyperarc consistency, domain consistency) Example: arc consistency \neq 2-consistency, AC < 2C on non-normalized binary CSP, and incomparable on arbitrary CSP

References

Bessiere C. (2006). **Constraint propagation**. In *Handbook of Constraint Programming*, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 3. Elsevier. Also as Technical Report LIRMM 06020, March 2006.