
Brief Intro to
Linear and Integer Programming

Marco Chiarandini

Institut for Matematik og Datalogi (IMADA)

3. februar 2014



Linear Programming
Integer Linear ProgrammingOutline

1. Linear Programming
Modeling

Resource Allocation
Diet Problem

Solution Methods
Gaussian Elimination
Simplex Method

2. Integer Linear Programming
Solution Methods
Applications
Finance

2



Linear Programming
Integer Linear ProgrammingOutline

1. Linear Programming
Modeling

Resource Allocation
Diet Problem

Solution Methods
Gaussian Elimination
Simplex Method

2. Integer Linear Programming
Solution Methods
Applications
Finance

3



Linear Programming
Integer Linear ProgrammingOutline

1. Linear Programming
Modeling

Resource Allocation
Diet Problem

Solution Methods
Gaussian Elimination
Simplex Method

2. Integer Linear Programming
Solution Methods
Applications
Finance

4



Linear Programming
Integer Linear ProgrammingOperations Research

Operation Research (aka, Management Science, Analytics): is the discipline
that uses a scientific approach to decision making. It seeks to determine
how best to design and operate a system, usually under conditions requiring
the allocation of scarce resources, by means of mathematics and computer
science. Quantitative methods for planning and analysis.

Algorithms
& Solvers

Modeling

Problem

Solution

Decision

Basic Idea: Build a mathematical model describing exactly what one wants,
and what the “rules of the game” are. However, what is a mathematical
model and how?
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Linear Programming
Integer Linear ProgrammingMathematical Modeling

I Find out exactly what the decision makes needs to know:

I which investment?
I which product mix?
I which job j should a person i do?

I Define Decision Variables of suitable type (continuous, integer valued,
binary) corresponding to the needs

I Formulate Objective Function computing the benefit/cost

I Formulate mathematical Constraints indicating the interplay between the
different variables.
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Linear Programming
Integer Linear ProgrammingResource Allocation

In manufacturing industry, factory planning: find the best product mix.

Example

A factory makes two products standard and deluxe.

A unit of standard gives a profit of 6 k Dkk.
A unit of deluxe gives a profit of 8 k Dkk.

The grinding and polishing times in terms of hours per week for a unit of
each type of product are given below:

Standard Deluxe
Grinding 5 10
Polishing 4 4

Grinding capacity: 60 hours per week
Polishing capacity: 40 hours per week
How much of each product, standard and deluxe, should we produce to
maximize the profit?
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Linear Programming
Integer Linear ProgrammingMathematical Model

Decision Variables

x1 ≥ 0 units of product standard
x2 ≥ 0 units of product deluxe

Object Function

max 6x1 + 8x2 maximize profit

Constraints

5x1 + 10x2 ≤ 60 Grinding capacity
4x1 + 4x2 ≤ 40 Polishing capacity

9



Linear Programming
Integer Linear ProgrammingMathematical Model

Machines/Materials A and B
Products 1 and 2

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1 ≥ 0
x2 ≥ 0

aij 1 2 bi

A 5 10 60
B 4 4 40
cj 6 8

Graphical Representation:

5x1 + 10x2 ≤ 60

4x1 + 4x2 ≤ 406x1 + 8x2 = 16

x1

x2
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Linear Programming
Integer Linear ProgrammingResource Allocation - General Model

Managing a production facility
1, 2, . . . , n products
1, 2, . . . ,m materials

bi units of raw material at disposal
aij units of raw material i to produce one unit of product j

cj = σj −
∑n

i=1 ρiaij profit per unit of product j
σj market price of unit of jth product
ρi prevailing market value for material i
xj amount of product j to produce

max c1x1 + c2x2 + c3x3 + . . . + cnxn = z
subject to a11x1 + a12x2 + a13x3 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn ≤ b2
. . .

am1x1 + am2x2 + am3x3 + . . . + amnxn ≤ bm
x1, x2, . . . , xn ≥ 0
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Linear Programming
Integer Linear ProgrammingNotation

max c1x1 + c2x2 + c3x3 + . . . + cnxn = z
s.t. a11x1 + a12x2 + a13x3 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn ≤ b2
. . .

am1x1 + am2x2 + am3x3 + . . . + amnxn ≤ bm
x1, x2, . . . , xn ≥ 0

max
n∑

j=1
cjxj

n∑
j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n
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Linear Programming
Integer Linear ProgrammingIn Matrix Form

max c1x1 + c2x2 + c3x3 + . . . + cnxn = z
s.t. a11x1 + a12x2 + a13x3 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn ≤ b2
. . .

am1x1 + am2x2 + am3x3 + . . . + amnxn ≤ bm
x1, x2, . . . , xn ≥ 0

cT =
[
c1 c2 . . . cn

]

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

a31 a32 . . . amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...

bm



max z = cT x
Ax = b

x ≥ 0
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Linear Programming
Integer Linear ProgrammingOur Numerical Example

max
n∑

j=1
cjxj

n∑
j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

max cT x
Ax ≤ b

x ≥ 0

x ∈ Rn, c ∈ Rn,A ∈ Rm×n, b ∈ Rm

max
[
6 8
] [x1

x2

]
[
5 10
4 4

] [
x1
x2

]
≤
[
60
40

]
x1, x2 ≥ 0
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Linear Programming
Integer Linear ProgrammingThe Diet Problem (Blending Problems)

I Select a set of foods that will satisfy a set of daily
nutritional requirement at minimum cost.

I Motivated in the 1930s and 1940s by US army.
I Formulated as a linear programming problem by

George Stigler
I First linear program
I (programming intended as planning not computer code)

min cost/weight
subject to nutrition requirements:

eat enough but not too much of Vitamin A
eat enough but not too much of Sodium
eat enough but not too much of Calories
...

15



Linear Programming
Integer Linear ProgrammingThe Diet Problem

Suppose there are:
I 3 foods available, corn, milk, and bread, and
I there are restrictions on the number of calories (between 2000 and 2250)

and the amount of Vitamin A (between 5000 and 50,000)

Food Cost per serving Vitamin A Calories
Corn $0.18 107 72

2% Milk $0.23 500 121
Wheat Bread $0.05 0 65

16



Linear Programming
Integer Linear ProgrammingThe Mathematical Model

Parameters (given data)
F = set of foods
N = set of nutrients

aij = amount of nutrient j in food i , ∀i ∈ F , ∀j ∈ N
ci = cost per serving of food i ,∀i ∈ F

Fmini = minimum number of required servings of food i ,∀i ∈ F
Fmaxi = maximum allowable number of servings of food i ,∀i ∈ F
Nminj = minimum required level of nutrient j ,∀j ∈ N
Nmaxj = maximum allowable level of nutrient j ,∀j ∈ N

Decision Variables
xi = number of servings of food i to purchase/consume, ∀i ∈ F

17
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Linear Programming
Integer Linear ProgrammingThe Mathematical Model

Objective Function: Minimize the total cost of the food

Minimize
∑
i∈F

cixi

Constraint Set 1: For each nutrient j ∈ N, at least meet the minimum required level∑
i∈F

aijxi ≥ Nminj , ∀j ∈ N

Constraint Set 2: For each nutrient j ∈ N, do not exceed the maximum allowable
level.∑

i∈F

aijxi ≤ Nmaxj , ∀j ∈ N

Constraint Set 3: For each food i ∈ F , select at least the minimum required number
of servings

xi ≥ Fmini ,∀i ∈ F

Constraint Set 4: For each food i ∈ F , do not exceed the maximum allowable
number of servings.

xi ≤ Fmaxi , ∀i ∈ F
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Linear Programming
Integer Linear ProgrammingThe Mathematical Model

system of equalities and inequalities

min
∑
i∈F

cixi∑
i∈F

aijxi ≥ Nminj , ∀j ∈ N∑
i∈F

aijxi ≤ Nmaxj , ∀j ∈ N

xi ≥ Fmini , ∀i ∈ F
xi ≤ Fmaxi , ∀i ∈ F
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Linear Programming
Integer Linear Programming

I The linear program consisted of 9 equations in 77 variables

I Stigler, guessed an optimal solution using a heuristic method

I In 1947, the National Bureau of Standards used the newly developed
simplex method to solve Stigler’s model.
It took 9 clerks using hand-operated desk calculators 120 man days to
solve for the optimal solution

20



Linear Programming
Integer Linear ProgrammingAMPL Model

� �
# diet.mod
set NUTR;
set FOOD;
#
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max { i in FOOD} >= f_min[i];
param n_min { NUTR } >= 0;
param n_max {j in NUTR } >= n_min[j];
param amt {NUTR,FOOD} >= 0;
#
var Buy { i in FOOD} >= f_min[i], <= f_max[i]
#
minimize total_cost: sum { i in FOOD } cost [i] * Buy[i];
subject to diet { j in NUTR }:

n_min[j] <= sum {i in FOOD} amt[i,j] * Buy[i] <= n_max[i];� �
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Linear Programming
Integer Linear ProgrammingAMPL Model

� �
# diet.dat
data;

set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG

TUR;

param: cost f_min f_max :=
BEEF 3.19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;

param: n_min n_max :=
A 700 10000
C 700 10000
B1 700 10000
B2 700 10000 ;

# %� �

� �
param amt (tr):

A C B1 B2 :=
BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10 ;� �
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Linear Programming
Integer Linear ProgrammingDuality

Resource Valuation problem: Determine the value of the raw materials on
hand such that: The company must be willing to sell the raw materials should
an outside firm offer to buy them at a price consistent with the market

zi value of a unit of raw material i∑m
i=1 bizi opportunity cost (cost of having instead of selling)

ρi prevailing unit market value of material i
σj prevailing unit product price

Goal is to minimize the lost opportunity cost

min
m∑

i=1

bizi (1)

zi ≥ ρi , i = 1 . . .m (2)
m∑

i=1

ziaij ≥ σj , j = 1 . . . n (3)

(1) and (2) otherwise contradicting market

23
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Linear Programming
Integer Linear Programming

Let

yi = zi − ρi

markup that the company would make by reselling the raw material instead
of producing.

min
m∑

i=1

yibi +
∑

i

ρibi

m∑
i=1

yiaij ≥ cj , j = 1 . . . n

yi ≥ 0, i = 1 . . .m
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Linear Programming
Integer Linear ProgrammingOutline

1. Linear Programming
Modeling

Resource Allocation
Diet Problem

Solution Methods
Gaussian Elimination
Simplex Method

2. Integer Linear Programming
Solution Methods
Applications
Finance
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Linear Programming
Integer Linear ProgrammingNotions of Computer Science

Algorithm: a finite, well-defined sequence of operations to perform a
calculation

Algorithm: LargestNumber

Input: A non-empty list of numbers L
Output: The largest number in the list L
largest ← L[0]
foreach each item in the list L do

if the item > largest then
largest ← the item

return largest

2 3 5 1 8 1 4L:

Running time: proportional to number of operations

26
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Linear Programming
Integer Linear ProgrammingGrowth Functions
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NP-hard problems: bad if we have to solve them, good for cryptology
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Linear Programming
Integer Linear ProgrammingHistory of Linear Programming (LP)

I Origins date back to Newton, Leibnitz, Lagrange, etc.

I In 1827, Fourier described a variable elimination method for systems of
linear inequalities, today often called Fourier-Moutzkin elimination
(Motzkin, 1937). It can be turned into an LP solver but inefficient.

I In 1932, Leontief (1905-1999) Input-Output model to represent
interdependencies between branches of a national economy (1976 Nobel
prize)

I In 1939, Kantorovich (1912-1986): Foundations of linear programming
(Nobel prize with Koopmans on LP, 1975)

I The math subfield of Linear Programming was created by George
Dantzig, John von Neumann (Princeton), and Leonid Kantorovich in the
1940s.

I In 1947, Dantzig (1914-2005) invented the (primal) simplex algorithm
working for the US Air Force at the Pentagon. (program=plan)
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Linear Programming
Integer Linear ProgrammingHistory of LP (cntd)

I In 1958, Integer Programming was born with cutting planes by Gomory
and branch and bound

I In 1979, L. Khachain found a new efficient algorithm for linear
programming. It was terribly slow. (Ellipsoid method)

I In 1984, Karmarkar discovered yet another new efficient algorithm for
linear programming. It proved to be a strong competitor for the simplex
method. (Interior point method)

29
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Linear Programming
Integer Linear ProgrammingLinear Programming

objective func. max /min cT · x c ∈ Rn

constraints A · x R b A ∈ Rm×n, b ∈ Rm

x ≥ 0 x ∈ Rn, 0 ∈ Rn

Essential features of a Linear program:
1. continuity (later, integrality)

2. linearity  proportionality + additivity

3. certainty of parameters
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I N natural numbers, Z integer numbers, Q rational numbers,
R real numbers

I column vector and matrices
scalar product: yT x =

∑n
i=1 yixi

I linear combination

x ∈ Rk

x1 ∈ R, . . . , xk ∈ R x =
∑k

i=1 λixi
λ = (λ1, . . . , λk)T ∈ Rk
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Theorem (Fundamental Theorem of Linear Programming)

Given:

min{cT x | x ∈ P} where P = {x ∈ Rn | Ax ≤ b}

If P is a bounded polyhedron and not empty and x∗ is an optimal solution to
the problem, then:

I x∗ is an extreme point (vertex) of P, or

I x∗ lies on a face F ⊂ P of optimal solution

Proof:

I assume x∗ not a vertex of P then ∃ a ball around it still in P. Show that
a point in the ball has better cost

I if x∗ is not a vertex then it is a convex combination of vertices. Show
that all points are also optimal.
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Implications:

I the optimal solution is at the intersection of hyperplanes supporting
halfspaces.

I hence finitely many possibilities

I Solution method: write all inequalities as equalities and solve all
(n
m

)
systems of linear equalities

I for each point we need then to check if feasible and if best in cost.

I each system is solved by Gaussian elimination
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1. Forward elimination
reduces the system to triangular (row echelon) form (or degenerate)
elementary row operations (or LU decomposition)

2. back substitution

Example:

2x + y − z = 8 (I )
−3x − y + 2z = −11 (II )
−2x + y + 2z = −3 (III )
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|-----------+---+-----+-----+---|
| | 2 | 1 | -1 | 8 |
| 3/2 I+II | 0 | 1/2 | 1/2 | 1 |
| I+III | 0 | 2 | 1 | 5 |
|-----------+---+-----+-----+---|

|-----------+---+-----+-----+---|
| | 2 | 1 | -1 | 8 |
| | 0 | 1/2 | 1/2 | 1 |
| -4 II+III | 0 | 0 | -1 | 1 |
|-----------+---+-----+-----+---|

|---+-----+-----+---|
| 2 | 1 | -1 | 8 |
| 0 | 1/2 | 1/2 | 1 |
| 0 | 0 | -1 | 1 |
|---+-----+-----+---|

|---+---+---+----|
| 1 | 0 | 0 | 2 | => x=2
| 0 | 1 | 0 | 3 | => y=3
| 0 | 0 | 1 | -1 | => z=-1
|---+---+---+----|

2x + y − z = 8 (I )
+ 1

2y + 1
2z = 1 (II )

+ 2y + 1z = 5 (III )

2x + y − z = 8 (I )
+ 1

2y + 1
2z = 1 (II )

− z = 1 (III )

2x + y − z = 8 (I )
+ 1

2y + 1
2z = 1 (II )

− z = 1 (III )

x = 2 (I )
y = 3 (II )

z = −1 (III )
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max
n∑

j=1
cjxj

n∑
j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

max cT x
Ax ≤ b

x ≥ 0

x ∈ Rn, c ∈ Rn,A ∈ Rm×n, b ∈ Rm

max
[
6 8
] [x1

x2

]
[
5 10
4 4

] [
x1
x2

]
≤
[
60
40

]
x1, x2 ≥ 0

39



Linear Programming
Integer Linear ProgrammingStandard Form

Each linear program can be converted in the form:

max cT x
Ax ≤ b

x ∈ Rn

c ∈ Rn,A ∈ Rm×n, b ∈ Rm

I if equations, then put two
constraints, ax ≤ b and ax ≥ b

I if ax ≥ b then −ax ≤ −b
I if min cT x then max(−cT x)

and then be put in standard (or equational) form

max cT x
Ax = b

x ≥ 0

x ∈ Rn, c ∈ Rn,A ∈ Rm×n, b ∈ Rm

1. “=” constraints
2. x ≥ 0 nonnegativity constraints
3. (b ≥ 0)
4. max
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introduce slack variables (or surplus)

5x1 + 10x2 + x3 = 60
4x1 + 4x2 + x4 = 40

max z =
[
6 8
] [x1

x2

]

[
5 10 1 0
4 4 0 1

]
x1
x2
x3
x4

 =

[
60
40

]
x1, x2, x3, x4 ≥ 0

Canonical std. form: one
decision variable is isolated in
each constraint and does not
appear in the other constraints
or in the obj. func.

It gives immediately a feasible solution:

x1 = 0, x2 = 0, x3 = 60, x4 = 40

Is it optimal? Look at signs in z  if positive then an increase would improve.
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First simplex tableau:

x1 x2 x3 x4 −z b
x3 5 10 1 0 0 60
x4 4 4 0 1 0 40

6 8 0 0 1 0

we want to reach this new tableau

x1 x2 x3 x4 −z b
x3 0 ? 1 ? 0 ?
x1 1 ? 0 ? 0 ?

0 ? 0 ? 1 ?

Pivot operation:
1. Choose pivot:

column: one with positive coefficient in obj. func. (to discuss later)
row: ratio between coefficient b and pivot column: choose the

one with smallest ratio:

θ = min
i

{
bi

ais
: ais > 0

}
, θ increase value of entering var.

2. elementary row operations to update the tableau
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I x4 leaves the basis, x1 enters the basis
I Divide row pivot by pivot
I Send to zero the coefficient in the pivot column of the first row
I Send to zero the coefficient of the pivot column in the third (cost) row

| | x1 | x2 | x3 | x4 | -z | b |
|---------------+----+----+----+------+----+-----|
| I’=I-5II’ | 0 | 5 | 1 | -5/4 | 0 | 10 |
| II’=II/4 | 1 | 1 | 0 | 1/4 | 0 | 10 |
|---------------+----+----+----+------+----+-----|
| III’=III-6II’ | 0 | 2 | 0 | -6/4 | 1 | -60 |

From the last row we read: 2x2 − 3/2x4 − z = −60, that is:
z = 60 + 2x2 − 3/2x4.
Since x2 and x4 are nonbasic we have z = 60 and
x1 = 10, x2 = 0, x3 = 10, x4 = 0.

I Done? No! Let x2 enter the basis

| | x1 | x2 | x3 | x4 | -z | b |
|--------------+----+----+------+------+----+-----|
| I’=I/5 | 0 | 1 | 1/5 | -1/4 | 0 | 2 |
| II’=II-I’ | 1 | 0 | -1/5 | 1/2 | 0 | 8 |
|--------------+----+----+------+------+----+-----|
| III’=III-2I’ | 0 | 0 | -2/5 | -1 | 1 | -64 |
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Optimality:
The basic solution is optimal when the coefficient of the nonbasic variables
(reduced costs) in the corresponding simplex tableau are nonpositive, ie, such
that:

c̄N ≤ 0
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?
? x1

x2

?
? x1

x2
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Integer Linear ProgrammingEfficiency of Simplex Method

I Trying all points is ≈ 4m

I In practice between 2m and 3m iterations

I Clairvoyant’s rule: shortest possible sequence of steps
Hirsh conjecture O(n) but best known n1+ln n
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1. Linear Programming
Modeling

Resource Allocation
Diet Problem

Solution Methods
Gaussian Elimination
Simplex Method

2. Integer Linear Programming
Solution Methods
Applications
Finance
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max 100x1 + 64x2
50x1 + 31x2 ≤ 250
3x1 − 2x2 ≥ −4

x1, x2 ∈ Z+

LP optimum (376/193, 950/193)
IP optimum (5, 0)

x1 + 0.64x2 − 4

3x1 − 2x2 + 4

50x1 + 31x2 − 250

x1

x2

 feasible region
convex but not
continuous: Now the
optimum can be on
the border (vertices)
but also internal.
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max x1 + 4x2
x1 + 6x2 ≤ 18
x1 ≤ 3

x1, x2 ≥ 0
x1, x2integer

x1 + 6x2 = 18

x1 + 4x2 = 2

x1 = 3

x1 + x2 = 5

x1

x2
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max x1 + 2x2
x1 + 4x2 ≤ 8
4x1 + x2 ≤ 8

x1, x2 ≥ 0, integer

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x1

x2
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4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x1 = 1
x2

x1

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1
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4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1
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(aka, knapsack problem)
There is a budget B available for investments in projects during the coming
year and n projects are under consideration, where aj is the cost of project j
and cj its expected return.
GOAL: chose a set of project such that the budget is not exceeded and the
expected return is maximized.

Variables xj = 1 if project j is selected and xj = 0 otherwise

Objective

max
n∑

j=1

cjxj

Constraints∑n
j=1 ajxj ≤ B

xj ∈ {0, 1}∀j = 1, . . . , n
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Given a certain number of regions, where to install a set of fire stations such
that all regions are serviced within 8 minutes? For each station the cost of
installing the station and which regions it covers are known.

Variables:
xj = 1 if the center j is selected and xj = 0 otherwise

Objective:

min
n∑

j=1

cjxj

Constraints:∑n
j=1 aijxj ≥ 1∀i = 1, . . . ,m
xj ∈ {0, 1}∀j = 1, . . . , n
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Integer Linear ProgrammingOther Applications of MILP

I Energy planning unit commitment
(more than 1.000.000 variables of which 300.000
integer)

I Scheduling/Timetabling
I Examination timetabling/ train timetabling

I Manpower Planning
I Crew Rostering (airline crew, rail crew, nurses)

I Routing
I Vehicle Routing Problem (trucks, planes, trains ...)
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In Finance LP can be used:

I By a government to design an optimum tax package to achieve some
required aim (in particular, an improvement in the balance of payments).

I In revenue management, concerned with setting prices for goods at
different times in order to maximize revenue. It is particularly applicable
to the hotel, catering, airline and train industries.

I In portfolio selection
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Given a sum of money to invest, how to spend it among a portfolio of shares
and stocks. The objective is to maintain a certain level of risk and to
maximize the expected rate of return from the investment.
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9 20.04 9.23 11.62
10 19.96 10.43 11.84
11 19.75 9.19 12.00
12 19.12 9.38 12.47
13 18.91 8.92 14.00
14 19.79 8.58 14.25
15 19.83 9.55 15.03

rjt A B C
1 0.01 0.15 0.04
2 0.01 0.01 0.00
3 -0.03 -0.02 -0.02
4 0.03 0.06 -0.02
5 -0.01 -0.05 0.01
6 -0.01 0.02 -0.02
7 -0.02 -0.05 -0.01
8 0.06 -0.04 0.01
9 -0.00 0.12 0.02
10 -0.01 -0.13 0.01
11 -0.03 0.02 0.04
12 -0.01 -0.05 0.12
13 0.05 -0.04 0.02
14 0.00 0.11 0.05
15 0.04 0.02 0.12

The trend of the Stock Exchange index (top), and the price (middle) and the
returns (bottom) of three investments.
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Linear Programming
Integer Linear ProgrammingPortfolio Selection - Modeling

Variables: a collection of nonnegative numbers 0 ≤ 0xj ≤ 1, j = 1, . . . ,N that
divide the capital we want to invest on the stocks j = 1, . . . ,N.

Objective:
The return (on each Krone) in the next time period that one would obtain
from the investment in a portfolio is

R =
∑

j

xjRj

and the expected return:

E [R] =
∑

j

xjE [Rj ]

We do not know E [Rj ]  a good guess is that it is like the average from past

E [Rj ] ≈ R̂j =
1
T

T∑
t=1

rjt

E [R] ≈ R̂ =
N∑

j=1

xj R̂j =
N∑

j=1

xj
1
T

T∑
t=1

rjt =
1
T

T∑
t=1

N∑
j=1

xj rjt

64



Linear Programming
Integer Linear ProgrammingPortfolio Selection - Modeling

Variables: a collection of nonnegative numbers 0 ≤ 0xj ≤ 1, j = 1, . . . ,N that
divide the capital we want to invest on the stocks j = 1, . . . ,N.
Objective:
The return (on each Krone) in the next time period that one would obtain
from the investment in a portfolio is

R =
∑

j

xjRj

and the expected return:

E [R] =
∑

j

xjE [Rj ]

We do not know E [Rj ]  a good guess is that it is like the average from past

E [Rj ] ≈ R̂j =
1
T

T∑
t=1

rjt

E [R] ≈ R̂ =
N∑

j=1

xj R̂j =
N∑

j=1

xj
1
T

T∑
t=1

rjt =
1
T

T∑
t=1

N∑
j=1

xj rjt

64



Linear Programming
Integer Linear ProgrammingPortfolio Selection - Modeling

Variables: a collection of nonnegative numbers 0 ≤ 0xj ≤ 1, j = 1, . . . ,N that
divide the capital we want to invest on the stocks j = 1, . . . ,N.
Objective:
The return (on each Krone) in the next time period that one would obtain
from the investment in a portfolio is

R =
∑

j

xjRj

and the expected return:

E [R] =
∑

j

xjE [Rj ]

We do not know E [Rj ]  a good guess is that it is like the average from past

E [Rj ] ≈ R̂j =
1
T

T∑
t=1

rjt

E [R] ≈ R̂ =
N∑

j=1

xj R̂j =
N∑

j=1

xj
1
T

T∑
t=1

rjt =
1
T

T∑
t=1

N∑
j=1

xj rjt

64



Linear Programming
Integer Linear ProgrammingPortfolio Selection - Modeling

Constraints: All and only the capital must used:
N∑

j=1

xj = 1

Risk: even though investments are expected to do very well in the long run,
they also tend to be erratic in the short term.
Many ways to define risk.
One way is to define the risk associated with an asset as xj |Rj − E [Rj ]| and
then for the whole portfolio as the mean absolute deviation (MAD):

E
[
|R − E [R]|

]
= E

[∣∣∑
j

xj(Rj − E [Rj ])
∣∣] ≤ ε

Again, we do not have Rj hence, the estimates for reward E [R] and risk
MAD are:

M̂AD =
1
T

T∑
t=1

[∣∣ N∑
j=1

xj(rjt − R̂j)
∣∣] ≤ ε
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Linear Programming
Integer Linear ProgrammingPortfolio Selection - Final Model

max
1
T

T∑
t=1

N∑
j=1

xj rjt

s.t.
N∑

j=1

xj = 1

N∑
j=1

xj(rjt − R̂j) ≤ ε ∀t = 1..T

N∑
j=1

xj(R̂j − rj,t) ≤ ε ∀t = 1..T

0 ≤ xj ≤ 1 ∀j = 1..N
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Linear Programming
Integer Linear ProgrammingPossible Extensions (1)

Due to management costs, at least 10 different assets must be bought.

We need to introduce binary variables zj for each j = 1..N that indicates
whether we are buying or not the asset and then add two constraints to the
model of Task 1:

max
1
T

T∑
t=1

N∑
j=1

xj rjt

s.t.(2)− (4)

0 ≤ xj ≤ 1 ∀j = 1..N
zj ≥ xj ∀j = 1..N

N∑
j=1

zj ≤ 10

zj ∈ {0, 1} ∀j = 1..N
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Linear Programming
Integer Linear ProgrammingPossible Extensions (2)

Another practical issue due to management costs: the fraction of assets to
allocate in one investment can be either zero or a value between 0.02 and 1.

max
1
T

T∑
t=1

N∑
j=1

xj rjt

s.t.(2)− (4)

xj ≤ zj ∀j = 1..N
xi ≥ 0.02zj ∀j = 1..N
0 ≤ xj ≤ 1 ∀j = 1..N
zj ∈ {0, 1} ∀j = 1..N
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Linear Programming
Integer Linear ProgrammingExample

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

x1 x2 x3 x4 −z b
x3 5 10 1 0 0 60
x4 4 4 0 1 0 40

6 8 0 0 1 0

x3 = 60 − 5x1 − 10x2
x4 = 40 − 4x1 − 4x2

z = + 6x1 + 8x2

...

x1 x2 x3 x4 −z b
x2 0 1 1/5 −1/4 0 2
x1 1 0 −1/5 1/2 0 8

0 0 −2/5 −1 1 −64

x1 = 2 − 1/5x3 + 1/4x4

x2 = 8 + 1/5x3 − 1/2x4

z = 64 − 2/5x3 − 1x4
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Linear Programming
Integer Linear ProgrammingException Handling

1. Unboundedness

2. More than one solution

3. Degeneracies
I benign
I cycling

4. Infeasible starting
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Linear Programming
Integer Linear ProgrammingSummary

1. Linear Programming
Modeling

Resource Allocation
Diet Problem

Solution Methods
Gaussian Elimination
Simplex Method

2. Integer Linear Programming
Solution Methods
Applications
Finance

A nice talk on planning at DSB-S http://www.dr.dk/DR2/Danskernes+
akademi/IT_teknik/Saet_dog_et_andet_tog_ind.htm
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