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This is a list of exercises for preparation to the written exam on January 19. (Last updated January
3rd.) Questions on the exercises can be sent to the teacher by email. Solutions of exercises for which
there has been a request will be discussed on January 16 in U49E at 10. A list of received questions
will be posted here.

Exercises

1. Search
Suppose you have two containers, initially empty. One has a capacity of exactly 3 liters; the other
has a capacity of 5 liters. You can pour water from one container to another, empty a container,
or fill a container at any time. Your problem is to place exactly 4 liters of water in the 5-liter
container. Describe how this problem could be framed as a search problem defining the related
components. Solve the problem within this framework and report the search performed.

2. Prove that the set of states expanded by algorithm A∗ is a subset of those expanded by breadth-
first search.

3. Every day that he leaves work, Albert the Absent-minded Professor, toggles his light switch
according to the following protocol: (i) if the light is on, he switches it off with probability 0.80;
and (ii) if the light is off, he switches it on with probability 0.30. At no other time (other than the
end of each day) is the light switch touched.

a) Suppose that on Monday night, Albert’s office is equally likely to be light or dark. What is
the probability that his office will be lit all the other four nights of the week (Tuesday through
Friday)?

b) Suppose that you observe that his office is lit on both Monday and Friday nights. Compute
the expected number of nights, from that Monday through Friday, that his office is lit.

Now suppose that Albert has been working for five years (i.e., assume that the Markov chain is
in steady state).

(c) Is his light more likely to be on or off at the end of a given workday?

4. Consider a variant of the game Nim. A number of tokens are placed on a table between the two
opponents; at each move, the player must divide a pile of tokens into two nonempty piles of
different sizes. Thus, 6 tokens may be divided into piles of 5 and 1 or 4 and 2, but not 3 and 3.
The first player who can no longer make a move losses the game. Explore exhaustively the search
space for a number of tokens equal to 7 and represent the game tree. Who will win the game?

5. Design a spam mail classifier by means of k-nearest neighbor and decision trees and report your
design choices. What is a lazy classifer and which of the two methods mentioned is such?

6. Suppose that a fair-looking coin is tossed three times and lands heads each time. Show that a
classical maximum likelihood estimate of the probability of landing heads would give 1, implying
that all future tosses will land heads. By contrast, show that a Bayesian approach with a prior of
0.5 for the probability of heads would lead to a much less extreme conclusion on the posterior
probability of observing heads.

7. Bayesian Networks and Learning
Consider a Naive Bayes problem with three features, x1, x2, x3. Imagine that we have seen a total
of 16 training examples, 8 positive (with y = 1) and 8 negative (with y = 0). In Table 1 you find
some of the counts.
What are the values estimated from the data for the following parameters:
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y = 0 y = 1

x1 = 1 7 7

x2 = 1 1 1

x3 = 1 3 5

Table 1: Count table

B

R A

P

Pr(B = b) Pr(B = ¬b)
0.50 0.50

B Pr(r) Pr(¬r)
T 0.3 0.7
F 0.8 0.2

B Pr(a) Pr(¬a)
T 0.1 0.9
F 0.5 0.5

R A Pr(p) Pr(¬p)
T T 0 1

T F 0.8 0.2
F T 0.6 0.4
F F 1 0

Figure 1: The graphical model of exercise on Bayesian Network Inference. Lower-case letter indicate
the outcome that the upper-case letter can take.

• Pr(x1 = 1|y = 0) = θ10,

• Pr(x2 = 1|y = 1) = θ21,

• Pr(x3 = 0|y = 0) = 1− θ30?

(You need to show the full derivation, answers by intuition without analytical justification do not
count.)

8. Bayesian Networks – Inference.

Figure 1 shows a graphical model with conditional probabilities tables about whether or not you
will panic at an exam based on whether or not the course was boring (“B”), which was the key
factor you used to decide whether or not to attend lectures (“A”) and revise doing the exercises
after each lecture (“R”).

You should use the model to make exact inference and answer the following queries:

• what is the probability that you will panic or not before the exam given that you attended
the lectures and revised after each lecture?

• what is the probability that you will panic or not before the exam?

• Your teacher saw you panicking at the exam and he wants to work out from the model the
reason for that. Was it because you did not come to the lecture or because you did not
revise?

Describe how stochastic inference methods like Prior-Sample, Rejection-Sampling, Likelihood-
weighting and Markov Chain Monte Carlo could be used to answer the queries above.

9. Directed Graphical Models Consider the graph in Figure left.

• Write down the standard factorization for the given graph.

• For what pairs (i, j) does the statement Xi is independent of Xj hold? (Don’t assume any
conditioning in this part.)
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Figure 2: A directed graph.
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Figure 3: Time series

• Suppose that we condition on {X2, X9}, shown shaded in the graph. What is the largest set
A for which the statement X1 is conditionally independent of XA given {X2, X9} holds?

• What is the largest set B for which X8 is conditionally independent of XB given {X2, X9}
holds?

10. Neural Networks

Express the output of a neural network with one single hidden layer as a function of the input
parameters when the activation function at the units is a linear function. Assume the same linear
function at each unit. Would it be possible to simplify the network to a one layer perceptron?

11. A common data analysis task is time series prediction, where we have a set of data that show
something varying over time, and we want to predict how the data will vary in the future.
Examples are stock markets, river levels and house prices.

Suppose we collected the daily measurement of the thickness of the ozone layer above Palmerston
North in New Zealand between 1996 and 2004. Ozone thickness is measured in Dobson units,
which are 0.01 mm thickness at 0 degree Celsius and 1 atmosphere pressure. The reduction in
stratosferic ozone is partly responsible for global warming and the increased incidence of skin
cancer. The thickness of the ozone varies naturally over the year as you can see from Figure 3.

Design an application of multi-layer perceptron to predict the ozone levels into the future and
report your design choices specifying inputs and outputs for the problem and consequently the
input and output nodes for the network.

12. Naive Bayes.

Consider the binary classification problem of spam email in which a binary label Y ∈ {0, 1} is to
be predicted from a feature vector X = (X1, X2, . . . , Xn), where Xi = 1 if the word i is present
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in the email and 0 otherwise. Consider a naive Bayes model, in which the components Xi are
assumed mutually conditionally independent given the class label Y.

a Draw a directed graphical model corresponding to the naive Bayes model.

b Find a mathematical expression for the posterior class probability p(Y = 1|x), in terms of the
prior class probability p(Y = 1) and the class-conditional densities p(xi|y).

c Make now explicit the hyperparameters of the Bernoulli distributions for Y and Xi. Call them,
µ and θi, respectively. Assume a beta distribution for the prior of these hyperparameters and
show how to learn the hyperparameters from a set of training data d = (yj,~xj)m

j=1 using a
Bayesian approach. Compare this solution with the one developed in class via maximum
likelihood.

13. Consider again a naive Bayes for spam classification. How things would change wrt the previ-
ous exercise if the feature vector for a an email j were now X j = (X j

1, X j
2, . . . , X j

nj), with nj the

number of words in the email and X j
i ∈ {1, . . . , N} no longer binary but indicating a number that

corresponds to the word that appears in the ith position.

14. Neural Networks Make a McCulloch-Pitts neuron or a multilayer network that can calculate the
logic function double implication: ⇔.

15. A joint probability table for the binary variables A, B, and C is given below.

A / B b1 b2
a1 (0.006, 0.054) (0.048, 0.432)
a2 (0.014, 0.126) (0.032, 0.288)

Table 2: Joint probability distribution P(A, B, C)

• Calculate P(B, C) and P(B).

• Are A and C independent given B? (Remember to report the justification of your answer.)

4


