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Probability Basis
Bayesian networksSummary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event
Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools
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1. Probability Basis

2. Bayesian networks
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Probability Basis
Bayesian networksOutline

♦ Syntax
♦ Semantics
♦ Parameterized distributions
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Probability Basis
Bayesian networksBayesian networks

Definition
A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

Pr(Xi | Parents(Xi ))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values

7



Probability Basis
Bayesian networksExample

Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity
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Probability Basis
Bayesian networksExample

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar , Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Probability Basis
Bayesian networksExample contd.
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Probability Basis
Bayesian networksCompactness

A CPT for Boolean Xi with k Boolean parents has 2k

rows for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)
If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint
distribution

For burglary net, 1 + 1 + 4 + 2 + 2= 10 numbers
(vs. 25 − 1 = 31)

B E

J

A

M

11



Probability Basis
Bayesian networksGlobal semantics

“Global” semantics defines the full joint distribution
as the product of the local conditional distributions:

P(x1, . . . , xn) =
n∏

i = 1

P(xi | parents(Xi ))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P(j | a)P(m | a)P(a | ¬b,¬e)P(¬b)P(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998
≈ 0.00063
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Probability Basis
Bayesian networksConstructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

Choose an ordering of variables X1, . . . ,Xn

For i = 1 to n
add Xi to the network
select parents from X1, . . . ,Xi−1 such that
Pr(Xi | Parents(Xi )) = Pr(Xi | X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

Pr(X1, . . . ,Xn) =
n∏

i = 1

Pr(Xi | X1, . . . , Xi−1) (chain rule)

=
n∏

i = 1

Pr(Xi | Parents(Xi )) (by construction)
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Probability Basis
Bayesian networksExample

Suppose we choose the ordering M, J, A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P(J | M) = P(J)? No
P(A | J,M) = P(A | J)?
P(A | J,M) = P(A)? No
P(B | A, J,M) = P(B | A)? Yes
P(B | A, J,M) = P(B)? No
P(E | B,A, J,M) = P(E | A)? No
P(E | B,A, J,M) = P(E | A,B)?
Yes
Deciding conditional independence is
hard in noncausal directions
(Causal models and conditional
independence seem hardwired for
humans!)
Assessing conditional probabilities is
hard in noncausal directions
Network is less compact:
1+ 2+ 4+ 2+ 4= 13 numbers needed
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Probability Basis
Bayesian networksExample: Car insurance
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Probability Basis
Bayesian networksCompact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution:
canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f (Parents(X )) for some function f

E.g., Boolean functions
NorthAmerican ⇔ Canadian ∨ US ∨Mexican

E.g., numerical relationships among continuous variables

∂Level
∂t

= inflow + precipitation - outflow - evaporation
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Probability Basis
Bayesian networksCompact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U1 . . .Uk include all causes (can add leak node)
2) Independent failure probability qi for each cause alone

=⇒ P(X | U1 . . .Uj ,¬Uj+1 . . .¬Uk) = 1−
j∏

i = 1

qi

Cold Flu Malaria P(Fever) P(¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1

Number of parameters linear in number of parents
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Probability Basis
Bayesian networksHybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Buys?

HarvestSubsidy?

Cost

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families
1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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Probability Basis
Bayesian networksContinuous child variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P(Cost = c | Harvest = h, Subsidy = true)

= N(ath + bt , σt)

=
1

σt
√
2π

exp

(
−1
2

(
c − (ath + bt)

σt

)2
)

Mean Cost varies linearly with Harvest, variance is fixed

 Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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Probability Basis
Bayesian networksContinuous child variables
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All-continuous network with linear Gaussian distributions
=⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous linear Gaussian network is a conditional Gaussian
network i.e., a multivariate Gaussian over all continuous variables for each
combination of discrete variable values
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Probability Basis
Bayesian networksDiscrete variable w/ continuous parents

Probability of Buys? given Cost should be a “soft” threshold:
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Probit distribution uses integral of Gaussian:
Φ(x) =

∫ x
−∞ N(0, 1)(x)dx

P(Buys? = true | Cost = c) = Φ((−c + µ)/σ)
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Probability Basis
Bayesian networksWhy the probit?

1. It’s sort of the right shape
2. Can be viewed as hard threshold whose location is subject to noise

Buys?

Cost Cost Noise
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Probability Basis
Bayesian networksDiscrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

P(Buys? = true | Cost = c) =
1

1 + exp(−2−c+µ
σ )

Sigmoid has similar shape to probit but much longer tails:
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Probability Basis
Bayesian networksSummary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of
CPTs

Continuous variables =⇒ parameterized distributions (e.g., linear
Gaussian)

25



Probability Basis
Bayesian networksBayes’ Rule and conditional independence

Pr(Cavity | toothache ∧ catch)

= α Pr(toothache ∧ catch | Cavity)Pr(Cavity)

= α Pr(toothache | Cavity)Pr(catch | Cavity)Pr(Cavity)

This is an example of a naive Bayes model:

Pr(Cause,Effect1, . . . ,Effectn) = Pr(Cause)
∏
i

Pr(Effecti | Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n
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Probability Basis
Bayesian networksLocal semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

Theorem: Local semantics ⇔ global semantics
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Probability Basis
Bayesian networksMarkov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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