Lecture 5
 Baysian Networks

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

\checkmark Introduction
\checkmark Artificial Intelligence
\checkmark Intelligent Agents
\checkmark Search
\checkmark Uninformed Search
\checkmark Heuristic Search

- Uncertain knowledge and Reasoning
- Probability and Bayesian approach
- Bayesian Networks
- Hidden Markov Chains
- Kalman Filters
- Learning
- Supervised Learning Bayesian Networks, Neural Networks
- Unsupervised EM Algorithm
- Reinforcement Learning
- Games and Adversarial Search
- Minimax search and Alpha-beta pruning
- Multiagent search
- Knowledge representation and Reasoning
- Propositional logic
- First order logic
- Inference
- Plannning

Outline

1. Probability Basis

2. Bayesian networks

Summary

Probability is a rigorous formalism for uncertain knowledge
Joint probability distribution specifies probability of every atomic event Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size
Independence and conditional independence provide the tools

Outline

1. Probability Basis
2. Bayesian networks

Outline

\diamond Syntax
\diamond Semantics
\diamond Parameterized distributions

Bayesian networks

Definition

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link \approx "directly influences")
a conditional distribution for each node given its parents:
$\operatorname{Pr}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example contd.

Compactness

A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values

Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$) If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint
 distribution

For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Global semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

$$
\text { e.g., } P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)
$$

$$
\begin{aligned}
& =P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e) \\
& =0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \\
& \approx 0.00063
\end{aligned}
$$

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- Choose an ordering of variables X_{1}, \ldots, X_{n}
- For $i=1$ to n add X_{i} to the network select parents from X_{1}, \ldots, X_{i-1} such that $\operatorname{Pr}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\operatorname{Pr}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$

This choice of parents guarantees the global semantics:

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) \text { ? No } \\
& P(A \mid J, M)=P(A \mid J) \text { ? } \\
& P(A \mid J, M)=P(A) \text { No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? } \\
& \text { Yes }
\end{aligned}
$$

Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions
Network is less compact:
$1+2+4+2+4=13$ numbers needed

Example: Car insurance

Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child
Solution:
canonical distributions that are defined compactly
Deterministic nodes are the simplest case:
$X=f(\operatorname{Parents}(X))$ for some function f
E.g., Boolean functions

NorthAmerican \Leftrightarrow Canadian \vee US \vee Mexican
E.g., numerical relationships among continuous variables

$$
\frac{\partial L e v e l}{\partial t}=\text { inflow }+ \text { precipitation }- \text { outflow }- \text { evaporation }
$$

Compact conditional distributions cont dotren nememis

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Longrightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$
\begin{aligned}
& P(\text { Cost }=c \mid \text { Harvest }=h, \text { Subsidy }=\text { true }) \\
& \quad=N\left(a_{t} h+b_{t}, \sigma_{t}\right) \\
& \quad=\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right)
\end{aligned}
$$

Mean Cost varies linearly with Harvest, variance is fixed
\rightsquigarrow Linear variation is unreasonable over the full range but works OK if the likely range of Harvest is narrow

Continuous child variables

All-continuous network with linear Gaussian distributions \Longrightarrow full joint distribution is a multivariate Gaussian

Discrete+continuous linear Gaussian network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$
\begin{aligned}
& \Phi(x)=\int_{-\infty}^{x} N(0,1)(x) d x \\
& P(\text { Buys }=\text { true } \mid \text { Cost }=c)=\Phi((-c+\mu) / \sigma)
\end{aligned}
$$

Why the probit?

1. It's sort of the right shape
2. Can be viewed as hard threshold whose location is subject to noise

Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

$$
P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{-c+\mu}{\sigma}\right)}
$$

Sigmoid has similar shape to probit but much longer tails:

Logistic Distribution: location $=0$, scale $=1$

- Bayes nets provide a natural representation for (causally induced) conditional independence
- Topology + CPTs $=$ compact representation of joint distribution
- Generally easy for (non)experts to construct
- Canonical distributions (e.g., noisy-OR) $=$ compact representation of CPTs
- Continuous variables \Longrightarrow parameterized distributions (e.g., linear Gaussian)

Bayes' Rule and conditional independeneeem

```
Pr(Cavity | toothache ^ catch)
    = \alpha Pr (toothache }\wedge\mathrm{ catch | Cavity) Pr(Cavity)
    = \alpha Pr(toothache | Cavity) Pr(catch | Cavity) Pr(Cavity)
```

This is an example of a naive Bayes model:

$$
\operatorname{Pr}\left(\text { Cause }^{\text {Effect }}{ }_{1}, \ldots, \text { Effect }_{n}\right)=\operatorname{Pr}(\text { Cause }) \prod_{i} \operatorname{Pr}\left(E f f e c t_{i} \mid \text { Cause }\right)
$$

Total number of parameters is linear in n

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

