DM841
 Constraint Programming

Modeling Exercises

Marco Chiarandini
Department of Mathematics \& Computer Science University of Southern Denmark

[Based on slides by Christian Schulte, KTH Royal Institute of Technology]

Outline

1. Magic Squares
2. Sudoku
3. Seat Planning
4. 8-Queens
5. Bin Packing
6. Summary

Outline

\author{

1. Magic Squares
}
2. Sudoku
3. Seat Planning
4. 8-Queens
5. Bin Packing
6. Summary

Magic Squares

2	9	4
7	5	3
6	1	8

Unique solution for $n=3$, upon the symmetry breaking of slide 99.

Magic Squares

- Find an $n \times n$ matrix such that
- every field is integer between 1 and n^{2}
- fields pairwise distinct
- sums of rows, columns, two main diagonals are equal
- Very hard problem for large n
- Here: we just consider the case $n=3$

Model

- For each matrix field have variable $x_{i j}$
- $x_{i j} \in\{1, . ., 9\}$
- One additional variable s for sum
- $s \in\{1, . ., 9 \times 9\}$
- All fields pairwise distinct
- distinct($x_{i j}$)
- For each row i have constraint
- $x_{i 0}+x_{i 1}+x_{i 2}=s$
- columns and diagonals similar

Script

- Straightforward
- Branching strategy
- first-fail
- split again: arithmetic constraints
- try to come up with something that is really good!
- Generalize it to arbitrary n

Symmetries

- Clearly, we can require for first row that first and last variable must be in order
- Also, for opposing corners
- In all (other combinations possible)
- $x_{00}<x_{02}$
- $x_{02}<x_{20}$
- $x_{00}<x_{22}$

Important Observation

- We know the sum of all fields

$$
1+2+\ldots+9=9(9+1) / 2=45
$$

- We "know" the sum of one row

s

- We know that we have three rows

$$
3 \times s=45
$$

Implied Constraints

- The constraint model already implies

$$
3 \times s=45
$$

- implies solutions are the same
- However, adding a propagator for the constraint drastically improves propagation
- Often also: redundant or implied constraint

Effect

- Simple model
- Symmetry breaking
- Implied constraint

92 nodes

29 nodes
6 nodes

Summary: Magic Squares

- Add implied constraints
- are implied by model
- increase constraint propagation
- reduce search space
- require problem understanding
- Also as usual
- break symmetries
- choose appropriate branching

Magic Squares: MiniZinc Model

```
include "alldifferent.mzn";
int: n = 4;
set of int: NUMBERS = 1..n^2;
set of int: ROW = 1..n;
set of int: COL = 1..n;
int:l = sum(NUMBERS) div n;
array[ROW,COL] of var NUMBERS: pos;
constraint alldifferent ([pos[i,j] | i in ROW, j in COL]);
constraint forall(i in ROW)(sum(j in COL)(pos[i,j]) = l);
constraint forall(j in COL)(sum(i in ROW)(pos[i,j]) = l);
constraint sum(i in 1..n)(pos[i,i])= l;
constraint sum(i in 1..n)(pos[i,n-i+1])=l;
% Symmetry breaking constraints
constraint pos[n,1] < pos[1,n];
constraint pos[1,1] < pos[1,n];
constraint pos[1,1] < pos[n,1];
solve satisfy;
output[if j = 1 then "\n" else " " endif ++
    show(pos[i,j])| i in ROW,j in COL] ++ ["\n"];
```


Outline

1. Magic Squares
2. Sudoku
3. Seat Planning
4. 8-Queens
5. Bin Packing
6. Summary

Example: Sudoku

Model and solve the following Sudoku in MIP and CP

	4	3		8		2	5	
6								
					1		9	4
9					4		7	
			6		8			
	1		2					3
8	2		5					
								5
	3	4		9		7	1	

Sudoku: ILP model

Let $y_{i j t}$ be equal to 1 if digit t appears in cell (i, j). Let N be the set $\{1, \ldots, 9\}$, and let $J_{k l}$ be the set of cells (i, j) in the 3×3 square in position k, l.

$$
\begin{array}{lr}
\sum_{j \in N} y_{i j t}=1, & \forall i, t \in N, \\
\sum_{j \in N} y_{j i t}=1, & \forall i, t \in N, \\
\sum_{i, j \in J_{k l}} y_{i j t}=1, & \forall k, l=\{1,2,3\}, t \in N, \\
\sum_{t \in N} y_{i j t}=1, & \forall i, j \in N, \\
y_{i, j, a_{i j}}=1, & \forall i, j \in \text { given instance. }
\end{array}
$$

Sudoku: CP model

Model:

$$
\begin{aligned}
& X_{i j} \in N, \\
& X_{i j}=a_{i j}, \\
& \text { alldifferent }\left(\left[X_{1 i}, \ldots, X_{9 i}\right]\right), \\
& \text { alldifferent }\left(\left[X_{i 1}, \ldots, X_{i g}\right]\right), \\
& \text { alldifferent }\left(\left\{X_{i j} \mid i j \in J_{k l}\right\}\right),
\end{aligned}
$$

$$
\begin{array}{r}
\forall i, j \in N, \\
\forall i, j \in \text { given instance, } \\
\forall i \in N, \\
\forall i \in N, \\
\forall k, l \in\{1,2,3\} .
\end{array}
$$

Search: backtracking

Sudoku: MiniZinc model

```
include "alldifferent.mzn";
int: n = 9;
set of int: NUMS = 1..9;
set of int: SQUARES = 1..3;
array[NUMS, NUMS] of 0..n: sudoku;
array[NUMS, NUMS] of var NUMS: solution;
% Fill sudoku with initial board
constraint forall(i, j in NUMS)(
    if sudoku[i, j] != 0 then solution[i, j] = sudoku[i, j] else true endif
);
% Rows, columns, and squares must each contain numbers 1-9
constraint forall(n in NUMS)(alldifferent(row(solution, n)));
constraint forall(n in NUMS)(alldifferent(col(solution, n)));
constraint forall(r, c in SQUARES)(alldifferent(
    [solution[3*(r-1) + i, 3*(c-1) + j] | i in SQUARES, j in
        SQUARES]
        ));
solve satisfy;
```

```
output [
    show(solution[i, j]) ++
    if j = n then
        if i mod 3 = 0 ハ i != n
                then
            "\n-----------------"
        else
            ""
        endif ++ "\n"
    elseif j mod 3 = 0 then
        "|"
    else
    endif
    | i in NUMS, j in NUMS
];
```

sudoku = [
$0,4,3,0,8,0,2,5,0$ |
6, 0, 0, 0, 0, 0, 0, 0, 0 |
0, 0, 0, 0, 0, 1, 0, 9, 4 |
9, 0, 0, 0, 0, 4, 0, 7, 0 |
0, 0, 0, 6, 0, 8, 0, 0, 0 |
$0,1,0,2,0,0,0,0,3$ |
8, 2, 0, 5, 0, 0, 0, 0, 0 |
$0,0,0,0,0,0,0,0,5$ |
$0,3,4,0,9,0,7,1,0$

Sudoku: CP model (revisited)

$$
\begin{array}{lr}
X_{i j} \in N, & \forall i, j \in N, \\
X_{i j}=a_{t}, & \forall i, j \in \text { given instance, } \\
\text { alldifferent }\left(\left[X_{1 i}, \ldots, X_{9 i}\right]\right), & \forall i \in N, \\
\text { alldifferent }\left(\left[X_{i 1}, \ldots, X_{i 9}\right]\right), & \forall i \in N, \\
\text { alldifferent }\left(\left\{X_{i j} \mid i j \in J_{k l}\right\}\right), & \forall k, I \in\{1,2,3\} .
\end{array}
$$

Redundant Constraint:

$$
\begin{array}{rr}
\sum_{j \in N} x_{i j}=45, & \forall i \in N, \\
\sum_{j \in N} x_{j i}=45, & \forall i \in N, \\
\sum_{i j} x_{i j} 45, & k, I \in\{1,2,3\} .
\end{array}
$$

Outline

1. Magic Squares
2. Sudoku
3. Seat Planning
4. 8-Queens
5. Bin Packing
6. Summary

Version 1: from [SMT]

```
enum Guests = { bride, groom, bestman, bridesmaid, bob, carol, ted, alice, ron, rona, ed, clara };
set of int: Seats = 1..12;
set of int: Hatreds = 1..5;
array[Hatreds] of Guests: h1 = [groom, carol, ed, bride, ted];
array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];
set of Guests: Males = { groom, bestman, bob, ted, ron, ed };
set of Guests: Females = { bride, bridesmaid, carol, alice, rona, clara };
array[Guests] of var Seats: pos; % seat of guest
array[Hatreds] of var Seats: p1; % seat of guest 1 in hatred
array[Hatreds] of var Seats: p2; % seat of guest 2 in hatred
array[Hatreds] of var bool: sameside; % seats of hatred on same side
array[Hatreds] of var Seats: cost; % penalty of hatred
constraint alldifferent(pos);
% Males and females in odd and even positions
constraint forall(m in Males)( pos[m] mod 2 == 1 );
constraint forall(w in Females)( pos[w] mod 2 == 0 );
% Ed not on corners
constraint not (pos[ed] in {1, 6, 7, 12});
% Bride and groom next to each other
constraint abs(pos[bride] - pos[groom]) <= 1 \ (pos[bride] <= 6 <-> pos[groom] <= 6);
```

```
% Cost of positioning based on hatreds (use auxillary arrays to find cost)
constraint forall(h in Hatreds)(
    p1[h] = pos[h1[h]] /\
    p2[h] = pos[h2[h]] /\
    sameside[h] = p1[h] <= 6 <-> p2[h] <= 6 /\
    cost[h] = sameside[h] * abs(p1[h] - p2[h]) + (1 - sameside[h]) * (abs(13 - p1[h] - p2[h]) + 1)
);
solve minimize sum(h in Hatreds)(cost[h]);
output [ "\(g) " | s in Seats, g in Guests where fix(pos[g]) == s];
```


Version 2: Different Tables - Set Variables

```
include "all_disjoint.mzn";
int: n;
set of int: PERSON = 1..n;
int: T; % number of tables
set of int: TABLE = 1..T;
int: S; % table size
array[int, 1..2] of PERSON: couples;
array[int, 1..3] of PERSON: hatreds;
% Result is the sets of people on each table (unknown seats)
array[TABLE] of var set of PERSON: table;
predicate same_table(PERSON: p1, PERSON: p2) = exists(t in TABLE)({p1, p2} subset table[t]);
% Tables seat at most S people each, and each person has one seat
constraint forall(t in TABLE)(card(table[t]) <= S);
constraint forall(p in PERSON)(exists(t in TABLE)(p in table[t]));
% exists is logical disjunction hence a person can still be in more than
% one table:
constraint all_disjoint(table);
% Ensure couples sit together
constraint forall(p in index_set_lof2(couples))(same_table(couples[p, 1], couples[p, 2]));
```

```
% Objective function - cost of seating, based on hatreds
% Unhappiness of a table is just the maximum unhappiness within that table
var int: obj = sum(t in TABLE)(
    max(c in index_set_1of2(hatreds))(
        hatreds[c, 3] * same_table(hatreds[c, 1], hatreds[c, 2])
    )
);
```

solve minimize obj;
output ["
(table) =
(obj)"];

```
n = 10;
T = 3;
S = 4;
couples = [| 1, 2
    4,7
    | 8, 9 |];
```

```
hatreds = [| 1, 3, 2
    | 1, 6, 8
    | 1, 9, 3
    | 2, 5, 4
    | 2, 6, 9
    | 2, 10, 4
    | 3, 6, 1
    | 3, 8, 2
    | 4, 5, 2
    | 4, 9, 5
    | 5, 10, 3
    | 7, 8, 6
    | 8, 10, 2
    | 9, 10, 4 |];
```


Version 2: Integer Variables + Set Variables

```
include ''globals.mzn'';
int: n;
set of int: PERSON = 1..n;
int: T; % number of tables
set of int: TABLE = 1..T;
int: S; % tables size
array[int,1..2] of PERSON: couples;
array[PERSON] of var TABLE: seat;
array[TABLE] of var set of PERSON: table;
predicate not_same_table(PERSON:p1, PERSON: p2) =
    seat[p1] != seat[p2];
constraint global_cardinality_low_up(seat, [t|t in TABLE],
    [0|t in TABLE], [S|t in TABLE]);
constraint forall(c in index_set_lof2(couples))
    (not_same_table(couples[c,1],couples[c,2]));
var int: obj = sum(c in index_set_lof2(couples))
    (seat[couples[c,1]] + seat[couples[c,2]]);
```

```
constraint forall(t in TABLE, p in PERSON)
    (p in table[t] <-> seat[p] = t);
solve minimize obj;
output [show(table), " = ", show(obj)];
```

```
n = 20;
T = 5;
S = 5;
couples = [| 1, 2 | 4, 5 | 6, 7 | 8, 10
    | 11, 12 | 13, 14 | 17, 18 |];
```


Solution:

```
[{1,4,6,8,11}, {2,5,7,13,17},
    {3,10,12,14,18}, {9,15,16,19,20}, {}]
    = 27
```

But it took long. Symmetry breaking?

Outline

1. Magic Squares
2. Sudoku
3. Seat Planning
4. 8-Queens
5. Bin Packing
6. Summary

Problem Statement

- Place 8 queens on a chess board such that the queens do not attack each other
- Straightforward generalizations
- place an arbitrary number: n Queens
- place as closely together as possible

What Are the Variables?

- Representation of position on board
- First idea: two variables per queen
- one for row
- one for column
- $2 \cdot n$ variables
- Insight: on each column there will be a queen!

Fewer Variables...

- Have a variable for each column
- value describes row for queen
- n variables
- Variables: $\quad x_{0}, \ldots, x_{7}$
where $\quad x_{i} \in\{0, \ldots, 7\}$

Other Possibilities

- For each field: number of queen
- which queen is not interesting, so...
- n^{2} variables
- For each field on board: is there a queen on the field?
- 8×8 variables
- variable has value 0: no queen
- variable has value 1: queen
- n^{2} variables

Constraints: No Attack

- not in same column
- by choice of variables
- not in same row
- $x_{i} \neq x_{j} \quad$ for $i \neq j$
- not in same diagonal
- $x_{i}-i \neq x_{j}-j \quad$ for $i \neq j$
- $x_{i}-j \neq x_{j}-i \quad$ for $i \neq j$
- $3 \cdot n \cdot(n-1)$ constraints

Fewer Constraints...

- Sufficient by symmetry $i<j$ instead of $i \neq j$
- Constraints
- $x_{i} \neq x_{j}$ for $i<j$
- $x_{i}-i \neq x_{j}-j$
for $i<j$
- $x_{i}-j \neq x_{j}-i$
for $i<j$
- $3 / 2 \cdot n \cdot(n-1)$ constraints

Even Fewer Constraints

- Not same row constraint

$$
x_{i} \neq x_{j} \quad \text { for } i<j
$$

means: values for variables pairwise distinct

- Constraints
- distinct $\left(x_{0}, \ldots, x_{7}\right)$
- $x_{i}-i \neq x_{j}-j \quad$ for $i<j$
- $x_{i}-j \neq x_{j}-i \quad$ for $i<j$

Pushing it Further...

- Yes, also diagonal constraints can be captured by distinct constraints
- see-assignment
distinct($\times 0, \quad \times 1, \ldots, \times 7$) distinct(x0-0, $\times 1-1, \ldots, x 7-7)$ distinct $(x 0+0, x 1+1, \ldots, x 7+7)$

Good Branching?

- Naïve is not a good strategy for branching
- Try the following (see assignment)
- first fail
- place queen as much in the middle of a row
- place queen in knight move fashion

Summary 8 Queens

- Variables
- model should require few variables
- good: already impose constraints
- Constraints
- do not post same constraint twice
- try to find "big" constraints subsuming many small constraints
. more efficient
- often, more propagation (to be discussed)

Outline

\author{

1. Magic Squares
}
2. Sudoku
3. Seat Planning
4. 8-Queens
5. Bin Packing
6. Summary

Bin-packing

Objects of different height must be packed into a finite number of bins or containers each of height H in a way that minimizes the number of bins used.
Model the problem and solve the following specific instance:

```
num_objs = 6;
objs = [360, 850, 630, 70, 700, 210]; % heights of objects
bin_capacity = 1440; % height of bins
```

Let m be the number of bins and n the number of items

Variables:

binary variables to represent for each bin whether the object is packed or not $x_{i j} \in \mathbb{B}^{m \times n}$ for $i \in[1 . . m]$ and $j \in[1 . . n]$
Auxiliary variables to represent the load of a bin.

Bin-packing

```
% binary variables
array[1..num_bins, 1..num_stuff] of var 0..1: bins;
% calculate how many things a bin takes
array[1..num_bins] of var 0..bin_capacity: bin_loads;
% number of loaded bins (which we will minimize)
var 0..num_bins: num_loaded_bins;
% minimize the number of loaded bins
% solve minimize num loaded bins;
% alternative solve statement
solve :: int_search(
    [bins[i,j] | i in 1..num_bins, j in 1..num_stuff], % + bin loads
    input_order, % first fail,
    indomain_max,
    complete)
    minimize num_loaded_bins;
```


constraint

```
% sanity clause: No thing can be larger than capacity.
% forall(s in 1..num_stuff) (
% stuff[s]<= bin_capacity
%)
% /\% the total load in the bin cannot exceed bin capacity
forall(b in 1..num_bins) (
    bin_loads[b] = sum(s in 1..num_stuff) (size[s]*bins[b,s])
)
\ % calculate the total load for a bin
sum(s in 1..num_stuff) (size[s]) = sum(b in 1..num_bins) (bin_loads[b])
^\ % a thing is packed just once
forall(s in 1..num_stuff) (
    sum(b in 1..num_bins) (bins[b,s]) = 1
    )
% /\ % symmetry breaking:
        % if bin_loads[i+1] is > 0 then bin_loads[i] must be > 0
        forall(b in 1..num_bins-1) (
        (bin_loads[b+1]>0 bin_loads[b]>0)
            /\% and should be fille\overline{d}}\mathrm{ in order of weight
            % bin_loads[b]>= bin_loads[b+1]
        )
    ^
decreasing(bin_loads) :: domain
^% another symmetry breaking: first bin must be loaded
bin_loads[1] > 0
\ % calculate num loaded bins
num_loaded_bins = sum(b in - 1..num_bins) (bool2int(bin_loads[b] > 0))
```


Outline

\author{

1. Magic Squares
}
2. Sudoku
3. Seat Planning
4. 8-Queens
5. Bin Packing
6. Summary

Common modeling principles

- what are the variables
- finding the constraints
- finding the propagators
- implied (redundant) constraints
- finding the branching
- symmetry breaking

Modeling Strategy

- Understand problem
- identify variables
- identify constraints
- identify optimality criterion
- Attempt initial model \rightsquigarrow simple?
try on examples to assess correctness
- Improve model \rightsquigarrow much harder! scale up to real problem size

Viewpoints

Viewpoint (definition of variables and domain extension $(\mathcal{X}, \mathcal{D})$):

- same solutions
- can be combined
- rule of thumb in choosing a viewpoint: it should allow the constraints to be easily and concisely expressed; the problem to be described using as few constraints as possible, as long as those constraints have efficient, low-complexity propagation algorithms

Releated concept: auxiliary variables and linking or channelling

Modeling Constraints

Better understood if:

- aware of the range of constraints supported by the constraint solver and the level of consistency enforced on each
- have some idea of the complexity of the corresponding propagation algorithms.
- combine them
- use global constraints
- extensional constraints
- implied constraints

