
DM841

Discrete Optimization

EasyLocal

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Framework

Framework set of abstract classes used by inheritance and definition of methods. It gives indication
about where to put everything.
Like a library. But instead of calling it, it calls your methods.

• Pure virtual methods are called hot spots.

• Warm spots (keep or redefine), virtual functions

• Cold spots are those already defined
Hollywood principle: don’t call us, we call you.

Outline

Hot Spots

Cold Spots

The Framework

https://bitbucket.org/satt/easylocal-3/src/master/

https://bitbucket.org/satt/easylocal-3/src/master/

Basics

Helpers

SearchEngines

Solvers

Input Output State Move

StateManager

RandomState()
CheckConsistency()

OutputManager

inputState()
ouputState()
>>,<<

NeighborhoodExplorer

FirstMove()
NextMove()
RandomMove()
MakeMove()
FeasibleMove()
==,=

CostComponent

computeCost()

DeltaComponent

computeDeltaCost()
printViolation()

FirstImprovement

SearchEngine::Go()

SimpleLocalSearch

Solver::AbstractLocalSearch::Solve()

Tester

C++: Standard Template Library
• Static arrays array<type>
• Dynamic arrays vector<type>
• lists (no random access) list<type>
• sets (no repetition of elements allowed) set<type> (implemented as red-black trees)
• maps map<keyttype, type> associative containers that contain key-value pairs with unique

keys. Keys are sorted. (similar to dictionaries in python) (implemented as red-black trees)
• unordered versions of sets and maps
• They require to include the std library:

#include <cstdlib >
#include <vector >
#include <list >
#include <map >
#include <set >
#include <algorithm >
#include <stdexcept >
using namespace std;

Iterators

• iterators are pointers to elements of STL containers

vector <int > A = {1,2,3,4};
vector <int >:: iterator pt; // or vector <int >:: const_iterator
for (pt=A.begin (); pt!=A.end(); pt++)

cout <<*pt;

• Type inference:

vector <int > A = {1,2,3,4};
vector <int >:: iterator pt1 = A.begin ();
auto pt2 = A.begin ();

• for syntax:

for (auto &x : my_array) {
x *= 2;

}

Outline

Hot Spots

Cold Spots

Solver::Solve()

In solver/abstractlocalsearch.hh

template <class Input , class Output , class State , typename CFtype >
SolverResult <Input , Output , CFtype > AbstractLocalSearch <Input , Output , State , CFtype >:: Solve() throw (ParameterNotSet , IncorrectParameterValue) {

auto start = std:: chrono ::high_resolution_clock::now();
InitializeSolve ();
FindInitialState ();
if (timeout.IsSet ()) {

SyncRun(std:: chrono :: milliseconds(static_cast <long long int >(timeout * 1000.0)));
} else

Go();
p_out = std::make_shared < Output > (this ->in);
om.OutputState(*p_best_state , *p_out);
TerminateSolve ();

double run_time = std:: chrono :: duration_cast < std:: chrono ::duration <double , std::ratio <1>>>(std:: chrono ::high_resolution_clock::now() - start).count ();

return SolverResult <Input , Output , CFtype >(*p_out , sm.CostFunctionComponents(*p_best_state), run_time);
}

Inheritance Diagram

LS Framework: SearchEngine

• SearchEngine classes are the algorithmic core of the framework.

• They are responsible for performing a run of a local search technique,
starting from an initial state and leading to a final one.

• SearchEngine has only Input and State templates, and is connected to the solvers

• LocalSearch has also Move, and the pointers to the necessary helpers. It also stores the basic
data common to all derived classes:

• current state,
• best state,
• current move,
• number of iterations.

Inheritance Diagram

Inheritance Diagram

A potential development for local search engines
(here Runner=SearchEngine)

SearchEngine::Go()

In SearchEngine.hh

template <class Input , class State , typename CFtype >
CostStructure <CFtype > SearchEngine <Input , State , CFtype >::Go(State& s) throw (ParameterNotSet , IncorrectParameterValue)
{

// std:: shared_ptr <State > p_current_state;
// std:: shared_ptr <State > p_best_state;
// state s is only used for input and output
InitializeRun(s); // in searchengine.hh, calls InitializeRun () in localsearch.hh (START)
while (!MaxEvaluationsExpired () && !StopCriterion () && !LowerBoundReached () && !this ->TimeoutExpired ())
{

PrepareIteration ();
try
{

SelectMove (); // <== in firstimprovement.hh
if (AcceptableMoveFound ()) // <== in localsearch.hh
{

PrepareMove (); // does nothing but virtual
MakeMove (); // in localsearch.hh where it calls MakeMove from NeighborhoodManager (MADE_MOVE)
CompleteMove (); // does nothing but virtual
UpdateBestState (); // in localsearch.hh (NEW_BEST)

}
}
catch (EmptyNeighborhood)
{

break;
}
CompleteIteration (); // does nothing but virtual

}
return TerminateRun(s); // in searchengine.hh , calls InitializeRun () in localsearch.hh (END)

}

First Improvement in EasyLocal

Definition of
• StopCriterion
• SelectMove

Interruptible

An inheritable class to add timeouts (in milliseconds) to anything.

MakeFunction produces a function object to be launched in a separate thread by SyncRun,
AsyncRun or Tester

Parametrized
An inheritable class representing a parametrized component.

In constructors, eg, AbstractLocalSearch

Observers

Infrastructure for printing debugging information on the runner
The command line parameter decides how much verbose the output must be:

• --main::observer 1 for all runners with the observer attached, it writes some info on the
costs everytime the runner finds a new best state.

• --main::observer 2 it writes also all times that the runner makes a worsening move

• --main::observer 3, it write all moves executed by the runner.

C++: Lambda functions (aka Closures)

• A function that can be written inline in source code to pass to another function
• A tutorial: http://www.cprogramming.com/c++11/c++11-lambda-closures.html

auto func = [] () { cout << "Hello world"; };
func (); // now call the function

vector <int > v {1, 2};
for_each(v.begin(), v.end(), [] (int val) { cout << val; });

• [a,&b] where a is captured by value and b is captured by reference.
• [this] captures the this pointer by value
• [&] captures all variables in the body of the lambda by reference
• [=] captures all variables in the body of the lambda by value
• [] captures nothing

[] () { return 1; } // compiler knows this returns an integer
[] () -> int { return 1; } // now we’re telling the compiler what we want

http://www.cprogramming.com/c++11/c++11-lambda-closures.html

	Hot Spots
	Cold Spots

