
DM841 (10 ECTS)
Heuristics and Constraint Programming for

Discrete Optimization
Marco Chiarandini, Asc Prof, IMADA

https://imada.sdu.dk/u/march
Video (14 min): https://imada.sdu.dk/u/march/Videos/dm841.mp4

Target students: • computer science • applied math • math and economics • data science

When: stretched over a full semester of the Bachelor or Master

Prerequisites: Programming (Java or Python)

Course Formalities

Many decision problems (logistics, production planning, timetabling, etc.) aiming at an
optimal use of resources can be formulated as constrained discrete optimization

problems.

Example: Social Golfer Problem (Combinatorial Design):

• 9 golfers: {1, 2, 3, 4, 5, 6, 7, 8, 9}
•wish to play in groups of 3 players

in 4 days
• such that no golfer plays in the same

group with any other golfer more than just
once.

Is it possible?

Decision Problems with Discrete Variables

•Dedicated algorithms
(eg.: enumeration, branch and bound, dynamic programming)

• Integer Linear Programming (DM871/DM545)

• Constraint Programming:

representation (modeling) + reasoning (search + inference)

•Heuristics & Metaheuristics

representation (modeling) + reasoning (search)

•Other (encode as SAT, SMT, etc.)

Solution Paradigms

Constraint programming aims at reducing the cost of developing solvers for combinatorial
problems through extensive reuse of code for pruning the search space by reasoning at the
level of constraints. Problems can be solved by just specifying a model, eg, in MiniZinc.
Integer variables:
assign[i,j] variable whose value is from the domain {1, 2, 3}
Constraints:
C1: each group has exactly groupSize players
C2: each pair of players only meets once

Constraint Programming

Heuristic algorithms: compute, efficiently, good solutions to a problem (without caring for
theoretical guarantees on running time and approximation quality).
Modeling

• Solution representation and
tentative solution

• Constraints:
→ implicit
→ soft

• Evaluation function

Solution approach: search by trial and error or other nature inspired processes
It requires ad hoc implementations (programming)

Heuristics

Constraint Programming:
•Modelling applications

Integer variables, set variables,
constraints

• Constraint reasoning
Consistency levels

• Filtering algorithms
Alldifferent, cardinality, regular expressions,
etc.

• Search:
Backtracking, Strategies

• Symmetry breaking

•Restart techniques

• CP Systems: MiniZinc

Heuristics
• Construction heuristics

• Local search

•Metaheuristics
→ Simulated annealing
→ Iterated local search
→ Tabu search
→ Variable neighborhood search
→ Evolutionary algorithms
→ Ant colony optimization

•Programming in Python

Contents

Aims:
• learning to solve discrete optimization problems with concrete real-life applications

•modeling in constraint programming

• design and implement heuristic algorithms

• assessing the solution approaches deployed

• describing in appropriate language the work done

Format:
• Full semester course

• Two classes per week plus one exercise class including hands on practice

• Course material: slides, articles and chapters from books

Aims & Format

Five obligatory assignments:

• individual

• deliverables: program + short written report

• Two of the five are graded with internal censor,
final grade given by weighted average of these two

Exam Form

https://imada.sdu.dk/u/march
https://imada.sdu.dk/u/march/Videos/dm841.mp4

