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DM841 - Constraint Programming
Exercises, Autumn 2023
Exercise 1 – ModellingShow that CSP generalizes SAT formulating the following SAT problem as a CSP:

(x ∨ y ∨ ¬z) ∧ (¬w ∨ ¬z) ∧ (w ∨ ¬y ∨ z)Viceversa, show how to encode CSPs in SAT.
Solution
Variables: {w(x1), x(x2), y(x3), z(x4)}
Domains: D(x1) = D(x2) = D(x3) = D(x4) = {false, true} = {0, 1}
Constraints: C = {C (x2, x3, x4) ≡ x2 ∨ x3 ∨¬x4; C (x1, x4) ≡ ¬x1 ∨¬x4; C (x1, x2, x4) ≡ x1 ∨¬x3¬x4}In Gecode:

clause(*this, BOT_OR, positives, negatives, 1);

See examples/sat.cpp.The constraints can be also written as 0–1 linear inequalities of the form aT x ≥ a0 Let ¬x =
x̄ = 1− x:

x2 + x3 + x4 ≥ 11− x1 + 1− x4 ≥ 1
x1 + 1− x3 + x4 ≥ 1

x2 + x3 + x4 ≥ 1
x1 + x4 ≤ 1

x1 − x3 + x4 ≥ 0
SAT Encodings of CSP:There are several ways of translating finite-domain CSP into SAT problems. Three main en-codings are the sparse encoding, the order encoding and the log encoding. For details you arereferred to [2]. In Minizinc they are called value, unary and binary, respectively.
Exercise 2 – Binary CSPShow how an arbitrary (non-binary) CSP can be polynomially converted into an equivalentbinary CSP.
Solution This can be done in two ways. (see fx [1])For an example CSP with: X = x1, x2, x3, x4, x5, x6, D(xi) = {0, 1} ∀i = 1..6 and C made of:

C1 : x1 + x2 + x6 = 1
C2 : x1 − x3 + x4 = 1
C3 : x4 + x5 − x6 > 0
C4 : x2 + x5 − x6 = 0

the equivalent binary CSP is shown in Figs. 1 and 2.
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Figure 1: Dual encoding

Figure 2: Hidden variables encoding

Exercise 3 – Domain-based tighteningsGiven two CSP, P and P′, we write P′ ⪯ P iff any instantiation I on Y ⊆ XP locally inconsistentin P is locally inconsistent in P′ as well.Consider the following CSP:
P = ⟨X = {x, y}, D E ≡ {D(x) = {1, 2, 3}, D(y) = {1, 2, 3}}, C⟩.Construct two domain tightenings P 1 and P 2 of P (a domain tightening is P′ such that

X P′ = X P, D E ′ ⊆ D E , C P′ = C P) for which neither the relation P ⪯ P′ holds nor P′ ⪯ P(which shows that domain tightenings establish a partial order and not a total order amondthe problems). Assume first that C admits any combination of values as valid. Then, considerthe case in which C ≡ {x ̸= y}. What does it change?
Solution A domain-tightening always gives a partial ordering since it is isomorphic with thepartial order ⊆ on D E .For example:

P1 = ⟨X = {x, y}, D E ≡ {D(x) = {1, 2}, D(y) = {2, 3}}
P2 = ⟨X = {x, y}, D E ≡ {D(x) = {2, 3}, D(y) = {2, 3}}

Note that domain tightening is a well founded operation, that is, it has a last element (fixedpoint) because finitely many variables and finitely many values.The addition of the constraint x ̸= y changes the possible tightenings that you might propose,for example, the problem:
P3 = ⟨X = {x, y}, D E ≡ {D(x) = {1}, D(y) = {1}}
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would not be a tightening because it does not satisfy the requirement that any instantiation Ion Y ⊆ XP locally inconsistent in P is locally inconsistent in P∋. For Y = {x, y} this does nothold.
Exercise 4 – Local ConsistencyAre the two following CSPs arc consistent:

• ⟨{x = 1, y ∈ {0, 1}, z ∈ {0, 1}}; x ∧ y = z; ⟩
Solution Yes. There exists a support for every value in every variable.

• ⟨{x ∈ {0, 1}, y ∈ {0, 1}, z = 1}; x ∧ y = z; ⟩
Solution No: x = 0 and y = 0 have no supportWhat happens to your answers if the constraint y ̸= z is added to the set of constraints?
Solution The first problem remains arc consistent even though it is inconsistent. Thesecond problem can be discovered inconsistent after making the problem arc consistentwith respect to one of the two constraints.

Exercise 5 – Local ConsistencyConsider the n-queens problem with n ≥ 3 and its formulation as a binary CSP that uses theleast variables (that is, n variables that indicate the position of the queens, say, on the columns).Is the initial status of this CSP problem arc consistent? If not, enforce arc consistency.
Solution the binary CSP that models the n-queens problem isVariables: x1, . . . , xn with domain [1, . . . , n] whre xi represents the row position of the queenplaced in the ith column.

• xi ̸= xj for i ∈ [1..n− 1], j ∈ [i + 1..n]
• xi − xj ̸= i− j for i ∈ [1..n− 1], j ∈ [i + 1..n]
• xi − xj ̸= j − i for i ∈ [1..n− 1], j ∈ [i + 1..n]

It is arc consistent. Formally we need to analyse each constraint separately. Consider forinstance the constraint xi− xj ̸= i− j with 1 ≤ i < j ≤ n and take a ∈ [1..n]. Then there exists
b ∈ [1..n] such that a− b ̸= i− j : just take b ∈ [1..n] that is different from a− i + j .What about the non-binary formulation?
Exercise 6 – Propagation on paperConsider an initial domain expression {x ∈ {0, 1, 2, 3}, y ∈ {0, 1, 2, 3}} and two constraints
x < y and y < x . Apply the propagation algorithm Revise2001 from the lecture using pen andpaper.
SolutionNot normalized. If we normalize it we discover the problem is inconsitent.However to apply the Revise2001 we proceed by calculating

Last[x, v, y]
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ie, the smallest support for (x, v ) on y...Note that bound arc consistency could be enforced faster for > with the rules:

D(x)← {n ∈ D(x)|n < max[D(y)]}
D(y)← {n ∈ D(y)|n > min[D(x)]}

Exercise 7 – Directed Arc ConsistencyA form of weaker arc consistency is directed arc consistency, which enforces consistency onlyin one direction. Decide if the following CSP ⟨x ∈ [2..10], y ∈ [3..7], x < y⟩ is directed arcconsistent in the case of linear ordering y ≺ x and in the case x ≺ y.
Exercise 8 – Crossword puzzleConsider the crossword grid of the figure

and suppose we are to fill it with the words taken from the following list:
• HOSES, LASER, SAILS, SHEET, STEER,
• HEEL, HIKE, KEEL, KNOT, LINE,
• AFT, ALE, EEL, LEE, TIE.

Is the initial status of the formulated CSP arc consistent? If not, enforce arc consistency.
SolutionDomains: D(x1) = D(X2) = {HOSES, LASER, SAILS, SHEET , ST EER} etc.Constraints: a constraint for each crossing. For positions 1 and 2:

C1,2 :={(HOSES, SAILS), (HOSES, SHEET ),(HOSES, ST EER), (LASER, SAILS),(LASER, SHEET ), (LASER, ST EER)}.
It is not arc consistent: no word in D(x2) begins with letter I, so for the values SAILS for thefirst variable no value for the second vairable exists such that the resulting pair satisfies theconsidered constraint.Apply AC to the constraint network. See figure 3.
Exercise 9 – Mathematical Proof of Tournament RankingA common approach to decide a winner in sport competitions is to run a tournament, in whichparticipants are grouped in one or more pools and have to play an equal number of matchesagainst opponents from the same or other pools. The winner is the participant that at the endof the tournament occupies the first position in the standings list. (An alternative approach is to
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Figure 3:
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run a single-elimination tournament where the loser of each match is immediately eliminatedfrom winning the championship or the first prize in the event.)Often the interest arises to prove mathematically whether after a number of rounds a parte-cipant can still become the champion given its current standing and all matches still to playin the tournament. For example, in football leagues the standing of a team is determined fromthe results by summing 3 points for each match won, 1 point for each match draw and 0 pointsfor each match loss. Then, after a certain number of matches we may want to check whether ateam can still be the winner of the league. Alternatively one may check which is the highestposition that a team can reach.Model this application as a CSP.(Thanks to Anders Knudsen and Jan Christensen for providing the data)
SolutionLet xhj ∈ {0, 1, 3} and xaj ∈ {0, 1, 3} be the variables that indicate the points made on match
j by the home team and the away team, respectively.Let yi ∈ N be the total points made by team i.

• the constraints ensuring that the right amount of points is distrubted at each match are:
C (xhj , xaj ) ≡ {(0, 3), (3, 0), (1, 1)} ∀j

alternatively, or redundant:
xhj + xaj = zwhere z ∈ {2, 3} is an auxiliary variable.• the linking between variables y and x:

yi = ∑
j

(δihjxaj + δiajxhj ) ∀i
where δihj and δiaj are binary parameters indicating whether the team i is the home teamor the away team on game j .• to find the position in the standings: we introduce an array of auxiliary variables w thatwill be the sorted version of y and an auxiliary vector z such that:

yi = wziIn gecode a global constraint takes care of this: sorted(y, w, z)Alternatively, we could use reification:
yi ≥ yl ⇔ bil∀l ̸= i

which in gecode is implemented by rel(yi, IRT GE, yl, bil).
For a given team i the objective will be to minimize zi or to maximize ∑

il bil.
A MIP model for solving the problem of finding the worst position of a team could be thefollowing: Let T indexed by i and j be the set of teams. Let S indexed by s be the set of allmatches, played and not yet played, and let K = {0, 1, 3} be the set of possible points gainedin a match by a team. Let h(s) and a(s) be the home and away team of match s, respectively,and let As = {(i, j)|i, j ∈ T , i = h(s), j = a(s)} be the set of pairs of teams playing in s. For eachmatch s ∈ S we define a binary variable xsik for any of the two teams in As and for any pointgain k ∈ K . We denote by t the reference team and we assume that variables corresponding

6



DM841 – Autumn 2023 Assignment Sheet
to played matches are fixed. We assume that t looses all remaining matches and that ties arebroken at disadvantage of t. We also define the set Bi ⊆ S to indicate the matches played byteam i.

min ∑
i

wit (1)
s.t. ∑

k
xisk = 1 ∀i ∈ As,∀s ∈ S (2)

xi,s,k + xs,j,k ≤ 1− zs ∀k ∈ {0, 3},∀(i, j) ∈ As,∀s ∈ S (3)
xs,i,1 + xs,j,1 = 2zs ∀(i, j) ∈ As,∀s ∈ S (4)
yi = ∑

j
xsi1 + 3 ∑

j
xsi3 ∀i ∈ T ,∀s ∈ Bi (5)

yi ≥ yt − 3(n− 1)wti ∀i ∈ T (6)
yi ≥ 0 ∀i ∈ T (7)
xsik ∈ {0, 1} ∀k ∈ K, i ∈ As, s ∈ S (8)
wij ∈ {0, 1} ∀i, j, i ̸= j (9)

Constraints 2 impose that exactly one of the three results is obtained by each team on eachgame. Constraints 3 and 4 take care of linking the variables at each game. The auxilary binaryvariables zs are used to represent a draw. Constraints 5 calculate the total points of the teamsand constraints 6 impose wij to be 1 if the team i has a better position in the ranking than theteam j . The objective function 1 minimizes the number of teams that do worse than team t.
References
[1] Roman Barták. Theory and practice of constraint propagation. In In Proceedings of the 3rd

Workshop on Constraint Programming in Decision and Control, pages 7–14, 2001.
[2] Van-Hau Nguyen. SAT encodings of finite-CSP domains: A survey. In Proceedings of

the Eighth International Symposium on Information and Communication Technology, SoICT2017, page 84–91, New York, NY, USA, 2017. Association for Computing Machinery.

7


