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DM841 - Discrete Optimization
Exercise 1Recall the definition of domain consistency and relaxed domain consistency such as bound(Z),range, and bound(D) consistency. What is the consistency level of the following CSPs?

P = ⟨x1 ∈ {1, 3}, x2 ∈ {1, 3}, x3 ∈ {1, 3}, x4 ∈ {1, 3}, C ≡ alldifferent(x1, x2, x3, x4)⟩
SolutionThe weakiest form is bound(Z) consistency. Accordingly we should ask whether the boundsof xi, i = 1, 2, 3, 4 have a bounded support. For x1 = 1 we can have x2 = 2, x3 = 3 but novalue would be left for x4. Hence, P is not bound(Z) consistent. Since this is the weakiestform of those asked all the others are also not satisfied.
P = ⟨x1 ∈ {1, 2, 3}, x2 ∈ {2, 3}, x3 ∈ {2, 3}, x4 ∈ {1, 2, 3, 4}, C ≡ alldifferent(x1, x2, x3, x4)⟩

SolutionSame as above, it is not consistent in any of the forms.
P = ⟨x1 ∈ {1, 3}, x2 ∈ {2}, x3 ∈ {1, 2, 3}, C ≡ alldifferent(x1, x2, x3)⟩

SolutionIt is bound(Z). For being range consistent all values of xi i = 1, 2, 3 must belong to a boundedsupport. This is not true since x3 = 2 has no support in x2. For being bound(D) it must bethat for all xi, i = 1, 2, 3 its bounds belong to a support. This holds true for this case. Sinceit is not range consistent then it is also not arc consistent.
P = ⟨x1 ∈ {1, 3}, x2 ∈ {2}, x3 ∈ {1, 3}, C ≡ alldifferent(x1, x2, x3)⟩

SolutionIt is bound(Z) and bound(D). Since 2 is not anymore in the domain of x3 then it is also rangeconsistent. It is also arc consistent.
P = ⟨x1 ∈ {1, 3}, x2 ∈ {1, 3}, x3 ∈ {1, 3}, C ≡ alldifferent(x1, x2, x3)⟩
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Solutionbound(Z): yes, bounded support hence we can reintroduce the value 2 in the support variablesrange: yes, bounded support hence we can reintroduce the value 2 in the support variablesbound(D): no.

Exercise 2Let V = {{x, y, z} and D(x) = {3, 4, 5}, D(y) = {0, 1, 2, 3}, D(z) = {1, 5}}. Define one or morepropagators implementing the constraint x ≤ y. Compute the propagator on the constraint storedefined. Is the propagator strong idempotent? Is it weak idempotent?
SolutionA propagator pleq for x ≤ y can be defined as follows:

p≤(D)(x) = {n ∈ D(x) | n ≤ max D(y)}
p≤(D)(y) = {n ∈ D(y) | n ≥ min D(x)}
p≤(D)(z) = D(z)

The propagator computes:
p≤(D)(x) = {n ∈ D(x) | n ≤ 3}
p≤(D)(y) = {n ∈ D(y) | n ≥ 3}
p≤(D)(z) = D(z)
{D(x) = {3}, D(y) = {3}, D(z) = {1, 5}}

We should distinguish the properties of each propagator individually taken from the prop-agator that arises from the collection of the three. Each individual propagator is stronglyidempotent because the current space cannot be tighten by another application of the prop-agator. The overall pleq propagator is also strongly idempotent. Applying it twice would notchange the result.Both cases are not subsumed: for some tightenings if the domain of a variable changes thenit might propagate again.
Exercise 3Define a propagator for x + y = d and then for ax + by = d. Finally, generalize it to the linearequality ∑

aixi = d.• Is it necessary to perform several iterations of your propagator? Is it idempotent?• What type of consistency it produces? (domain or bound consistency level?)• Apply the propagator to the following example: D(x) = {2..7}, D(y) = {0..2}, D(z) =
{−1..2}, x = 3y + 5z. Compare the result with your answer to the previous point.

SolutionDomain consistency:
D(x)← {n ∈ D(x) | ∃ny ∈ D(y), nz ∈ D(z) : n = ny + nz}

∀nx ∈ D(x) ∃ny ∈ D(y), nz ∈ D(z) : n = ny + nz
∀ny ∈ D(y) ∃nx ∈ D(x), nz ∈ D(z) : n = nx − nz
∀nz ∈ D(z) ∃nx ∈ D(x), ny ∈ D(y) : n = nx − ny
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It is strongly idempotent.Range consistency:

D(x)← {n ∈ D(x) | n ≤ max D(y) + max D(z) ∧ n ≥ min D(y) + min D(z)}
Bound(Z) consistency:

D(x)← {n ∈ D(x) | n ≤ max D(y) + max D(z) ∧ n ≥ min D(y) + min D(z)}
∀nx ∈ {min D(x), max D(x)}
∃ny ∈ [min D(y).. max D(y)]
∃nz ∈ [min D(z).. max D(z)]
nx = nz + ny

x + y = z
x ∈ {1, 2, 4, 8} y ∈ {1, 2, 4} z ∈ {1, 2, 3, 4, 6}
x ∈ {2, 4, 8} y ∈ {1, 3, 4} z ∈ {1, 3, 4} domain
x ∈ {2, 4, 8} y ∈ {1, 3, 4} z ∈ {1, 2, 3, 4} bound(Z)

D(x)← {n ∈ D(x) | min D(z)−max D(y) ≤ n ≤ max D(z)−min D(y)}
D(y)← {n ∈ D(y) | min D(z)−max D(x) ≤ n ≤ max D(z)−min D(x)}
D(z)← {n ∈ D(z) | min D(x) + min D(y) ≤ n ≤ max D(x) + max D(y)}They are each strongly idempotent. But all together they are not idempotent. Hence, theyneed to be iterated before reaching fixed point.

x = 3y + 5z
x ∈ {2..7} y ∈ {0..2} z ∈ {−1..2}
x ∈ {3, 5, 6} y ∈ {0, 1, 2} z ∈ {0, 1} domain
x ∈ {2..7} y ∈ {0..2} z ∈ {0, 1} bound(Z)

D(x)← {n ∈ D(x) | 3 min D(y) + 5 min D(z) ≤ n ≤ 3 max D(y) + 5 max D(z)}
D(x)← {n ∈ D(x) | 3 · 0 + 5 · (−1) ≤ n ≤ 3 · 2 + 5 · 2}
D(x)← {n ∈ D(x) | −2 ≤ n ≤ 16}
D(x)← {2..7}

D(y)← {n ∈ D(y) | −5/3 max D(z) + 1/3 min D(x) ≤ n ≤ −5/3 min D(z) + 1/3 max D(x)}
D(y)← {n ∈ D(y) | −5/3 · (2) + 1/3 · 2 ≤ n ≤ −5/3 · (−1) + 1/3 · 7}
D(y)← {n ∈ D(y) | −10/3 + 1/3 ≤ n ≤ 5/3 + 7/3}
D(y)← {n ∈ D(y) | −3 ≤ n ≤ 4}
D(y)← {0..2}

D(z)← {n ∈ D(z) | 1/5 min D(x)− 3/5 max D(y) ≤ n ≤ 1/5 max D(x)− 3/5 min D(y)}
D(z)← {n ∈ D(z) | 1/5 · 2− 3/5 · 2 ≤ n ≤ 1/5 · 7− 3/5 · 0}
D(z)← {n ∈ D(z) | −4/5 ≤ n ≤ 7/5}
D(z)← {0, 1}Checking y and x does not change the situation.

Exercise 4 Usefulness of Weak IdempotencyAssume V = {x, y} and D(x) = [0..3], D(y) = [0..5] Consider the constraint 3x = 2y and thepropagator p32
p32(D)(x) = D(x) ∩ {⌈(2 min D(y))/3⌉, . . . , ⌊(2 max D(y))/3⌋}
p32(D)(y) = D(y) ∩ {⌈(3 min D(x))/2⌉, . . . , ⌊(3 max D(x))/2⌋}Apply the propagator three times and state whether the propagator is strong idempotent. If it isnot is there a constraint store for which it is weak idempotent?
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SolutionThe propagator p32 is not idempotent. D′ = p32(D) is

D′(x) = [0..3] ∩ [0..⌊10/3⌋] = [0..3]
D′(y) = [0..5] ∩ [0..⌊9/2⌋] = [0..4]

Now D′′ = p32(D′) is
D′′(x) = [0..3] ∩ [0..⌊8/3⌋] = [0..2]
D′′(y) = [0..4] ∩ [0..⌊9/2⌋] = [0..4]Hence p32(p32(D )) = D ′′ ̸= D ′ = p32(D ) and the propagator is not idempotent. Further

D′′′ = p32(D′′) is
D′′′(x) = [0..2] ∩ [0..⌊8/3⌋] = [0..2]
D′′′(y) = [0..4] ∩ [0..⌊6/2⌋] = [0..3]The new bound for y is 3 and is obtained without rounding. In this case we are guaranteedthat the proagator is at a fixedpoint, that is, it is weakly idempotent with respect to thereached domain extension D ′′′. Knowing that it is weakly idempotent on D ′′′ is useful sincewe can avoid running the propagator again unlees the problem changes.

Exercise 5How would you implement a propagator for max(x, y) = z?
SolutionLet’s rewrite constraint as:

z = max(x1, x2)?and write the propagator for z. Using as example the revise reduction rule presented in Slide17 of “Propagation Events and Implementations” and assuming to have the information Mtypeand ∆j :
function propagate_max(inout: z; in: z=max(x_i,x_j), Mtype, Delta_j):

if min(x_i)>max(x_j):

changes, Delta_z <- propagate_=(inout: z; in: z=x_i )

return changes, Delta

Changes<-0

switch Mtype do:

case RemValue:

nothing;

case IncMin:

remove all v > max(min(x_i),min(x_j)) from D(z)

case DecMax:

remove all v > max(max(x_i),max(x_j)) from D(z)

case Instantiate to k:

if (min(x_i)>k)

nothing

else if (max(x_i)<k)

remove all v != k from D(z)

Changes <- the types of changes performed;

Delta_i <- all values removed from D(x_i);

return Changes, Delta_i
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Exercise 6The element constraint models the following very common situation: we have to decide whichamong four goods to buy; for each good we have a different price; how to propagate the pricewhile the variable is not yet assigned a good?

• Define a way to handle this situation without using the element constraint.• Define a propagator for the element(a, x, y) constraint.• Is it necessary to perform several iterations of your propagator? Is it idempotent?• What type of consistency it produces? (domain or bound consistency level?)• Run your propagator on the following example: a = [4, 5, 7, 9], D(x) = {1, 2, 3}, D(y) =
{2..8}.• Can you devise a clever data structure that would speed up the propagation? Would it beworth storing the data structure for successive iterations?• In gecode the element constraint is used also to implement a particular type of channeling,namely, z = xy, where y and z are single variables and x is an array of variables. Writeformally the propagators for x, y, z for the constraint element(z, x, y).

Solution

Exercise 7 Steel Mill Slab DesignModel the following problem and report the model in written form.Steel is produced by casting molten iron into slabs. A steel mill can produce a finite number,
σ , of *slab sizes*. Let sizes be expressed in weight. An order has two properties, a *colour*corresponding to the route required through the steel mill and a *weight*. Given d input orders,the problem is to pack the orders onto slabs, the number and size of which are also to bedetermined, such that the total capacity of the slabs in minimized. In other words, we wantto minimize the waste of steel (steel produced in addition to the actual sizes of orders). Thisassignment is subject to two further constraints:
Capacity constraints: The total weight of orders assigned to a slab cannot exceed the slab ca-pacity.
Colour constraints: Each slab can contain at most p of k total colours (p is usually 2). The colourconstraints arise because it is expensive to cut up slabs in order to send them to differentparts of the mill.
The above description is a simplification of a real industrial problem. For example, the problemmay also include inventory matching, where surplus stock can be used to fulfil some of the orders.A numerical example:
σ = 3, d = 5, k = 3, p = 2. Slab sizes = ‘12, 10, 7‘ (note, we can use more than one slab of acertain size and we do not need to use all slab sizes).

------- --- --- --- --- ---

Order 1 2 3 4 5

Size 5 8 3 4 6

Color 1 3 2 1 2

------- --- --- --- --- ---

A solution:
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--------------- ------- ---- --- -- --

Slab Capacity 12 10 7

Orders 1,3,4 2 5

Load 12 8 6

Loss 0 2 1

--------------- ------- ---- --- -- --

SolutionWhen first formulated, problems may look undefined. For this it is important to ask questionsin order to make the formulation crystal clear. For this specific case, the following is animproved formulation.The problem consists in producing d orders from a set of slabs. Several orders can be madefrom the same slab but there is no limitation on the number of slabs that can be requested.Each order o has a color co and requires an amount of capacity (weight) wo of the slabto which it is assigned. Each slab has a capacity (weight) that must be chosen from theincreasing set of weights {u1, u2, ..., uk}.The constraints of the problem are:1. an order must be produced from a single slab,2. the sum of order weights on a slab must not exceed the slab capacity,3. a slab can be used to produce orders of at most p different colors.The first two constraint describe a bin-packing problem. The third one is called the colorconstraint. Therefore, this problem is also called a variable sized bin-packing problem withcolor constraints in the literature. In the steel mill slab design problem, the objective is to useas few slabs as possible to satisfy the demand. More precisely, the objective is to minimizethe cumulative sum of the weights of the slabs used. An obvious lower bound to this problemis the sum of order weights.
Here is another small, illustrative example of an instance and of a solution. Assume that wehave p = 2 and d = 10 orders whose weights and colors are:Order 1 2 3 4 5 6 7 8 9 10Weight 1 3 2 9 9 11 3 3 5 2Color Red Black Black Red Red White Red White Black Red
and let the set of possible slab weight be {5, 7, 9, 11, 15, 18}. A solution to this problem is touse 4 slabs and assign the orders in the following way:
Slab Orders Weight sum Slab weight1 1, 2, 3 6 72 4, 5 9 93 6, 7, 8 17 184 9, 10 7 7Note that in this solution:

• there are no more than two different colors on the same slab;• the maximum slab weight is not exceeded;• the slab weight is just large enough for producing the orders;• the cost of this solution (the sum of the slab weights) is 41;
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• a lower bound is the sum of order weights that is 39

In the next page you find the most common model from Antoine Gargani and Philippe RefaloAn efficient model and strategy for the steel mill slab design problem Principles and Practiceof Constraint Programming–CP 2007, 77–89, 2007.A Minizinc implementation of the model described is:
% Some parameters omitted

array [Orders] of int: size;

array [Orders] of Colors: color;

array [0..maxCapa] of 0..maxCapa: slack = ... ;

% Variables:

array [Orders] of var Slabs: placedIn;

% Constraints:

array [Slabs] of var 0..maxCapa: load;

constraint bin_packing_load(load, placedIn, size);

array [Slabs] of var 0..2: nColors;

constraint forall(s in Slabs)(nColors[s] = ... );

% Objective:

var int: objective = sum(s in Slabs)(slack[load[s]]);

solve minimize objective;

A Gecode model is:
IntVarArray x[Orders](Slabs); // the slab in which the order is placed
IntVarArray l[Slabs](0..maxCap); // the load in each slab

multiknapsack(x,weight,l);

forall (s in Slabs)

sum(c in Colors) (or(o in colorOrders[c])(x[o] == s)) <= 2;

cost(sum(s in Slabs) loss[l[s]])

branch(x)

However, in Stefan Heinz, Thomas Schlechte, Rüdiger Stephan, and Michael Winkler Solvingsteel mill slab design problems Constraints 17(1), 39–50, 2012 it is shown that MILP is byfar more efficient in solving steel mill problems.Further references:- https://www.csplib.org/Problems/prob038/- https://www.csplib.org/Problems/prob038/references/
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