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Abstract. Obviously, it is not a good idea to apply an optimization algorithm with wrongly
speci�ed parameter settings, a situation which can be avoided by applying algorithm tuning.
Sequential tuning procedures are considered more e�cient than single-stage procedures. [1]
introduced a sequential approach for algorithm tuning that has been successfully applied
to several real-world optimization tasks and experimental studies. The sequential procedure
requires the speci�cation of an initial sample size k. Small k values lead to poor models and
thus poor predictions for the subsequent stages, whereas large values prevent an extensive
search and local �ne tuning. This study analyzes the interaction between global and local
search in sequential tuning procedures and gives recommendations for an adequate budget
allocation. Furthermore, the integration of hypothesis testing for increasing e�ectiveness of
the latter phase is investigated.

1 Introduction

This work deals with a tuning procedure, the sequential parameter optimization (SPO) [1]. It does
not challenge applying tuning methods for experimental analysis of optimization algorithms per
se. Nor does it focus on any of the particular questions such methods may help to answer as has
been done elsewhere [2], although our investigations shall lead to additional insight in this respect,
too. Let us assume that SPO is useful for obtaining, e.g., algorithm designs for (near-) optimal
performance and parameter interactions. However, the tuning procedure itself is not as �xed as
may seem: Integration of several techniques (Design and analysis of computer models (DACE),
space �lling designs, noise reduction by increase of repeats) left some of the interfaces in a rather
provisional state. Stated di�erently, we have to admit that even this parameter tuning method
does have parameters.

As neither theoretical results nor a long empirical tradition of applying SPO exist, it remains
unclear how appropriate the currently employed default methods and values are. The SPO tuning
procedure is model-based and thus consists of two subsequent phases: a) building a �rst model, and
b) repeatedly locating and evaluating points with maximal expected improvement. The latter phase
shall lead to good solutions for the tuning problem and a better model at the same time. Given
that the tuned system usually contains nondeterministic optimization algorithms, e.g. evolutionary
algorithms (EAs), three questions emerge:
1. How much e�ort shall be put into obtaining the �rst model?
2. Which method shall be utilized for determining an initial set of design points?
3. How often shall second-phase design points be evaluated?
We consider it impossible to answer these questions in a too general context, without further
specifying the tuned algorithm�problem system. However, focusing on a very small number of cases
implies the danger of generating results without much practical value due to loss of transferability to
other such systems. We face this di�culty by selecting test problems that are di�erent in their most
important properties, e.g., unimodal vs. multimodal and real-valued vs. binary coded problems.
Furthermore, the chosen algorithm-problem systems are well known, thereby enabling to utilize the
experience collected within the evolutionary computation (EC) community over years. But still, our
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Algorithm 1 Sequential parameter optimization
1: procedure SPO(DA, DP ) . Algorithm und problem design
2: Select p ∈ DP and set t = 0 . Select problem instance
3: X

(t)
A = {x1, x2, . . . , xk} . Sample k initial points, e.g., LHS

4: repeat
5: yij = Yj(xi, p)∀xi ∈ X

(t)
A and j = 1, . . . , r(t) . Fitness evaluation

6: Y
(t)
i =

Pr(t)

j=1 y
(t)
ij /r(t) . Sample statistic for the ith design point

7: xb with b = arg mini(yi) . Determine best point
8: Y (x) = F(β, x) + Z(x) . DACE model from Eq. 1
9: XS = {xk+1, . . . , xk+s} . Generate s sample points, s � k
10: y(xi), i = 1, . . . , k + s . Predict �tness from the DACE model
11: I(xi) for i = 1, . . . , s + k . Expected improvement, cf. [6]
12: X

(t+1)
A = X

(t)
A ∪ {xk+i}m

i=1 /∈ X
(t)
A . Add m promising points

13: if x
(t)
b = x

(t+1)
b then

14: r(t+1) = 2r(t) . Increase number of repeats
15: end if
16: t = t+1 . Increment iteration counter
17: until Budget exhausted
18: end procedure

study can by no means be comprehensive; a certain arbitrariness remains and will only vanish when
much more experimental e�ort than practicable in this work has been put into exploration and
analysis of SPO performance. Although we restrict ourselves here to SPO as the only employed
tuning procedure, the obtained conclusions may still be of interest for the application of other
model-based methods, in particular such that are built on regression techniques. These have to
face the same three questions enumerated above.

In the following section, we give a short summary of the SPO tuning procedure, going into
details only insofar as necessary for discussing our experimental results. Section 3 discusses initial
designs issues, whereas Sect. 4 considers second-phase points. The paper closes with a summary
and an outlook in Sect. 5.

2 Sequential Parameter Optimization

SPO is a methodology for the experimental analysis of optimization algorithms to determine
improved algorithm designs1 and to learn, how the algorithm works. It employs computational
statistic methods to investigate the interactions among optimization problems, algorithms, and
environments. We consider each algorithm design with associated output as a realization of a
stochastic process. We apply stochastic process models as introduced in [3], [4], and [5] to opti-
mization algorithms such as EAs and particle swarm algorithms (PSO). Consider a set of m design
points x = (x(1), . . . , x(m))T with x(i) ∈ Rd. In the DACE stochastic process model, a determin-
istic function is evaluated at the m design points x. The vector of the m responses is denoted as
y = (y(1), . . . , y(m))T with y(i) ∈ R. The process model proposed in [3] expresses the deterministic
response y(x(i)) for a d-dimensional input x(i) as a realization of a regression model2 F and a
stochastic process Z,

Y (x) = F(β, x) + Z(x). (1)

Note that SPO inherits this process model but utilizes it for the situation of nondeterministic
responses as these are usually obtained from the heuristic optimization algorithms we want to

1These contain all parameter settings determining a speci�c algorithm instance, whereas problem designs

subsume parameters related to the optimization problem and domain speci�c restrictions such as problem
dimension or allowed function evaluations.

2Based on experiences from previous studies, quadratic regression models have been used in our studies.
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investigate. Algorithm 1 [2] describes the SPO in a formal manner. 3 The selection of a suitable
problem instance is done in the pre-experimental planning phase to avoid �oor and ceiling e�ects
(l.2). Latin hypercube sampling can be used to determine an initial set of design points (l.3). After
the algorithm has been run with these k initial parameter settings (l.5), the DACE process model
is used to discover promising design points (l.10). Note that other sample statistics than the mean,
e.g., the median, can be used in l.6. The m points with the highest expected improvement4 are
added to the set of design points, where m should be small compared to s. The update rule for
the number of reevalutions r(t) (l.13-15) guarantees that the new best design point x

(t+1)
b has been

evaluated at least as many times as the previous best design point x
(t)
b . Obviously, this is a very

simple update rule and more elaborate rules are possible. Other termination criteria exist besides
the budget based termination (l.17).

3 Initial Designs

There is no simple or generic rule for choosing adequate initial designs. In classical design and
analysis of experiments (DoE), this is a chicken and egg problem: To determine a suitable regression
model, design points are needed. But, the choice of optimal design points depends on the model [7].
Experiments reported in [8] indicated the superiority of space �lling design over classical factorial
designs in the context of parameter tuning for stochastic search algorithms. Therefore, we consider
space-�lling designs, which are nicely motivated in [4]. So, are we lucky and can simply ignore
the complex determination of adequate designs by �lling the design space randomly with design
points? Unfortunately not, because even with space �lling designs, certain design criteria can be
chosen. We will use Latin hypercube designs (LHD) for the following experiments. LHDs haven
been chosen because they are easy to understand and implement�and not because they are proven
to be superior to other space �lling designs. [6, p. 149] state: It has not been demonstrated that
LHDs are superior to any designs other than simple random sampling (and they are only superior
to simple random sampling in some cases).

In many real-world optimization scenarios, a limited budget, say time or function evaluations,
for performing the optimization task is available. At least two situations, in which an allocation of
the resources is possible, can be mentioned here: First, the distribution of the available resources
among the tuning phase and the optimization phase, and second, the allocation of the resources
to the initial design and the second phase (sequential steps) during tuning. We will consider the
latter problem in this paper. The analysis will be restricted to the case where the number of initial
repeats is very low, e.g., r = 2. This is reasonable, because (i) in many real-world optimization
scenarios large r values are prohibitive and (ii) we are interested in a quick exploration of the search
space in the �rst step of this sequential procedure. So, the experimental goal can be formulated in
the SPO framework as follows:

Goal 1. For a given number of function evaluations, Nb, determine a number k of initial points
for the initial design as introduced in Step 3 of Algorithm 1.

Note, that this goal occurs in any sequential tuning procedure and is not restricted to SPO. And, in
general, sequential procedures are considered more e�cient than procedures that use the available
budget at once [9]. Therefore, we are considering the most interesting cases and our results are of
interest for other situations as well. The trade-o� can be described as follows: Shall we use a good
initial design with only a few sequential steps or perform many sequential steps based on a poor
initial design?

3A toolbox that implements SPO and provides additional material is available at:
http://www.springer.com/3-540-32026-1.

4A situation in which each point has the same expected improvement can occur if (i) the objective
function is constant and (ii) the optimization algorithm is deterministic. However, these situations are
only of theoretical relevance.
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A PSO was chosen to illustrate our approach and to generate some empirical data. The al-
gorithm and results from experiments are outlined in [10]. Our PSO implementation is based on
the PSOTOOLBOX, which was integrated into the SPO framework. The PSO algorithm design
is shown in Table 1. To specify the problem design, the following parameters were considered (Ta-
ble 2). The experiment's name, the number of runs n, the maximum number of function evaluations
tmax, the problem's dimension d, the initialization method, the termination criterion, the interval
[xl, xu] for the initialization of the object variables, as well as the optimization problem and the
performance measure (PM) are reported. The reader is referred to [2] for a discussion of these
parameters. Finally, we have to describe the SPO design (Table 3). If no sequential steps were
performed, nLHD design points can be evaluated. Note, that nLHD = Nb/r, where Nb denotes the
budget, i.e., the total number of algorithm runs, and r is the number of repeats used in the �rst de-
sign. The SPO uses a quadratic regression model and a Gaussian correlation function. Four design
points with the highest expected improvement and the best solution found so far are evaluated in
the sequential phase of the SPO run (m = 4).The experimental analysis clearly demonstrated that
the determination of a suitable initial design is of crucial importance for the second phase, which
performs a local tuning. To play safe, we recommend increasing the number of initial design points.
The number of sequential optimization steps could be reduced in many situations without a signi�-
cant performance loss. Furthermore, experiments with several optimization problems (Rosenbrock,
Sphere, Rastrigin, Griewank, and problems from the Moré test set) revealed that a small number
of function re-evaluations is bene�cial. To give an example: The following best function values have
been obtained on the 30-dim Rosenbrock function (with tmax = 500 function evaluations for the
PSO and r = 2 reevaluations for the initial design): 223 with 15 initial LHD samples, 324 with
100 initial samples, and 486 with 150 initial samples. If the number of reevaluations was increased
to r = 5, a function value of 1663 was obtained with 15 initial LHD sample points and values of
403 (2776) with 30 (60) initial samples. All values reported here are averages from 100 repeats. 5

4 Evaluation of Second-Phase Points

SPO subsequently evaluates second-phase points (algorithm designs) for two reasons: a) to �nd
optimal designs, and b) to improve the model. In order to counteract the nondeterministic nature
of the modeled algorithm-problem system, the standard procedure doubles the number of repeats
performed of the current best point whenever an iteration fails to provide an improvement, cf. l. 14
from Algorithm 1. Consequently, to enable fair comparison between the current best and newly
suggested point(s), SPO ensures that both have been sampled for the same number of times.
However, this procedure can become expensive in terms of algorithm runs, resulting in rather low
numbers of second-phase points if the available budget is tight.

If we had means to decide which of the points (best or suggested) leads to better performance
without necessarily carrying out the suggested number of repeats in full, algorithm runs could
be saved, resulting in a higher number of second-phase points without great loss of information.
Concerning the search for optimal designs, this is undoubtedly an advantage. However, it could be
argued that reducing the number of repeats also entails reducing the intended model improvement.
Nevertheless, we have to take into account that a) second-phase points are usually evaluated much
more often than �rst-phase points, b) only clearly worse performing points can easily be rejected,
and c) saved runs are invested again into new points in the following iterations.

Table 1. PSO algorithm designs. Swarm size s, cognitive and social parameters c1 and c2, and witerScale,
the percentage of the run, in which the inertia weight is decreased.

Design s c1 c2 witerScale

x
(0)
PSO 2 : 50 1 : 3 1 : 3 0.1:0.9

5Note, that [10] used 80 times more function evaluations to obtain similar results. They used recom-
mendations from theory to perform their experiments, e.g., theoretically derived values for c1 and c2.
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Table 2. Problem designs for the sphere function. Similar designs have been used for the Rosenbrock,
Griewank, and Rastrigin function. The maximum number of function evaluations for one algorithm run
is tmax, whereas n denotes the number of repeats for each algorithm run. Altogether, n × tmax function
evaluations were performed. See [10]

Design Init. Term. PM n tmax d xl xu

x
(0)
sphere DETEQ EXH MBST 100 500 {10, 20, 30} 15 30

Table 3. SPO algorithm designs for tuning the particle swarm optimization. �Merge� denotes the statistic
that was used to compare the performance of algorithm designs with stochastically disturbed results, e.g.,
from EAs
Design LHDini Nb r merge

x
(0)
SPO 15:nLHD {100,300,1000} 2:5 {min, median, mean, max }

Assessing signi�cant di�erences of two underlying systems represented by a number of samples
is the intended purpose of hypothesis tests. However, the often applied t-tests require approximate
normal distributions, a demand that is usually not met by results obtained from heuristic optimiza-
tion algorithms. As an alternative, we therefore resort to bootstrap permutation tests ([11], section
14.5) which do not presume normality but instead anticipate identically shaped distributions. For-
tunately, permutation tests are robust against small di�erences in shapes so that we regard this
prerequisite as more realistic then to expect normality.

Goal 2. Detect if integrating bootstrap permutation tests for early rejection of bad algorithm
designs can signi�cantly improve SPO performance.

As test problems, we chose a real-valued and a binary coded one, the 30-dimensional shifted
Rastrigin function from [12], and the 20-dimensional (120 bits in 20 groups) massively multimodal
deceptive problem MMDP [13]. On these, a naïve evolution strategy (ES) as described in [14] is
run, with gaussian mutation and self-adaptation for the real-valued and bit �ip mutation for the
binary coded problem. Additionally, the κ selection operator allows to switch between comma and
plus type selection by imposing a maximum age for any individual. SPO is utilized to �nd good
algorithm designs with a maximum run length of 104 evaluations and a budget of 1000 allowed
algorithm runs, of which 200 (50× 4 repeats) are used for the initial LHD.

Figure 1 presents box plots of the best found algorithm designs detected by SPO in 20 inde-
pendent runs, with and without integrating bootstrap permuation tests. Note that the setting is
deliberately chosen to be hard for the ES, so that the global optimum (−330 for the Rastrigin
problem, 20 for the MMDP) is rarely attained. SPO obviously performs signi�cantly better in
both cases when tests are used. A Wilcoxon rank sum test computes the probability (p-value) for
wrongly rejecting the null-hypothesis (both variants perform equally) to 0.01121 for the Rastrigin
function, and 10−6 for the MMDP. This is suprising as we expected that result distributions con-
sisting only of discrete values were harder to compare and thus the impact of testing for the ES
on the MMDP would be small. Nevertheless, these two cases only demonstrate that there can be
a positive e�ect. Further experimentation is necessary to �nd out if this result correctly hints to a
general trend.

5 Summary and Outlook

The choice of an appropriate initial design is important for SPO. Selection of good algorithm
parameter settings from initial designs produces the largest performance gain. In some situations,

Table 4. ES algorithm designs. The learning rate τ applies to the Rastrigin function, the mutation rate
pmut to the MMDP, resulting in 4 free parameters each.

Design µ κ λ
µ

τ pmut

x
(0)
ES 1 : 200 1 : 20 4 : 12 0.001 : 1.0 0.001 : 0.999
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Fig. 1. Distribution of best algorithm design performances from 20 SPO runs of an ES on the shifted
Rastrigin function (left, minimization) and the discrete MMDP problem (right, maximization), with and
without applying bootstrap permutation tests.

e.g., where no complex stochastic process models are available (or desired), this �rst improvement
can be su�cient. Selecting the best point from a set of space �lling design points�as used in the
initial phase of the SPO approach�can be regarded as a simple heuristic. This heuristic works
surprisingly well and should become a standard in experimental research. It is of great importance
to screen out worse algorithm design points.

Furthermore, SPO was able to improve the algorithm's performance drastically. For example,
[10] report a mean best �tness value of y = 316 on the 30-dimensional Rosenbrock function after
40,000 function evaluations. We were able to obtain an even slightly better result (y = 202) with
500 function evaluations only. Problem instance selection plays an important role in the context of
SPO and active experimentation. First, it might be of interest to determine an algorithm design
that works well on a broad number of problem instances, i.e., it improves the robustness of the
algorithm. Second, it is an invaluable tool in the experimentalist's arsenal for determining why an
algorithm works.

As far we know is this the �rst analysis of the interplay between initial designs and sequential
steps for the optimization of stochastic search algorithms. Several parameters, that have not varied
in our study, are of interest for further investigations, e.g., other stochastic process models can be
used. Summarizing, we can conclude that SPO is a robust tool for tuning (stochastic) search
algorithms.
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