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Abstract. Empirical scoring is the most common ranking method in automated reasoning
systems competitions. Statistical testing can be used to validate the results of scoring, since
the null hypothesis of equal performances is tested against the alternative hypothesis of
signi�cant di�erence in performances using a precise mathematical formulation. This paper
evaluates the merits of statistical testing as a complement to empirical scoring using the
2005 comparative evaluation of solvers for quanti�ed Boolean formulas as a case study.

1 Introduction

The automated reasoning research community has grown accustomed to competitive events where
a pool of systems is run on a pool of problem instances with the purpose of ranking the systems
according to their performances. A non-exhaustive list of such events includes the CADE ATP
System Competition (CASC) [1], the SAT Competition [2], the International Planning Competi-
tion (see, e.g., [3]), and the CP Competition (see, e.g., [4]). The main purpose of such events is to
designate a winner. Even if the results of competitions may provide less insight than controlled ex-
periments in the spirit of [5], there is a general agreement that they raise interest in the community
and play a fundamental role in the advancement of the state of the art.

In this paper, we consider two di�erent aspects that can play a crucial role in a competition:
empirical scoring of the systems, and statistical testing of the alleged results. Empirical scoring is
the most common ranking method, whereby a tournament-like procedure is used to assign bonuses
and penalties to each system according to various performance indicators. The main advantages
of such procedures are their simplicity and their wide applicability, but they o�er no direct way
of assessing the quality of the rankings provided. Statistical testing, on the other hand, is less
commonly used (see, e.g., [3]), usually more complicated, and less widely applicable than empirical
scoring. However, statistical testing provides direct means of assessing the result quality, since the
null hypothesis of equal performances is tested against the alternative hypothesis of signi�cant
di�erence in performances using a precise mathematical formulation that allows an estimate of the
results within some stated con�dence level.

Our analysis considers seven scoring methods (references can be found in [6]): three previously
used in systems competitions, i.e., CASC, the SAT competition, and the evaluation of solvers for
quanti�ed Boolean formulas (QBFs); three adapted from the eponymous voting systems, i.e., Borda
count, range voting and Schulze's method; and, �nally, YASM (�Yet Another Scoring Method�)
described, e.g., in [6]. Using the data of the 2005 comparative evaluation of QBF solvers (QBFE-
VAL'05 [7]) as a case study, we summarize the results presented in [6] to show how YASM provides
the best compromise among the scoring methods considered over a set of measures that quantify
desirable properties of the methods. Then, we assess the signi�cance of the ranking obatined by
YASM using two statistical tests inspired by the approach of [3], namely the Wilcoxon signed rank
test (see, e.g., Ch. 12a of [8]) and the Wilcoxon rank sum test (also known as Mann-Whitney
test; see, e.g., Ch.11a of [8]). Our goal is to assess whether the ranking obtained with an empirical
scoring method like YASM is compatible with the signi�cance results inferred by statistical testing,
and whether statistical testing can help us to improve the scienti�c value of competitions.
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support, and the anonymous reviewers who helped to improve the original manuscript.



22 M. Narizzano et al.

CASC/QBF SAT YASM Borda range voting Schulze
openQBF 201 62621.96 482.92 436 1682 2
qbfbdd 106 39250.40 363.74 338 3236 1
QMRes 227 173068.18 1505.03 1085 12050 4
quantor 318 228854.86 2701.35 2019 32393 8
semprop 289 148690.91 1787.92 1569 18317 7
ssolve 243 110121.36 1415.36 1286 16038 6

WalkQSAT 189 87535.25 1090.98 962 11010 3
yQuaffle 250 110257.07 1351.92 1200 11864 5

Table 1. Scores of the solvers (listed in alphabetical order) according to the methods considered. Schulze's scores are the
straightworward translation of the ordinal ranking derived by applying the method which is not based on cardinal scoring.

2 Preliminaries

The results of QBFEVAL'05 can be listed in a table Runs comprised of four attributes: solver,
instance, result, and cputime. The attributes solver and instance report which solver is
run on which instance. result is a four-valued attribute: sat (resp. unsat), i.e., the instance
was found satis�able (resp. unsatis�able) by the solver, time, i.e., the solver exceeded the time
limit (900 seconds), and fail, i.e., the solver aborted for some reason beyond our control. Finally,
cputime reports the CPU time spent by the solver on the given instance (see [7] for more details).

The analysis herewith presented rests on the assumption that a table identical to Runs is
the only input required by a scoring method. As a consequence, we do not take into account (i)
memory consumption, (ii) correctness of the solution, and (iii) �quality� of the solution. The only
measures of merit at our disposal are the number of problems solved and the CPU time of the
solvers. Notice that the number of problems solved is correct as long as the CPU time measure
used to enforce the time limit is so. Therefore, to ensure accuracy of the empirical scoring methods
it is very important to tame potential sources of errors in the CPU time measures. A detailed
analysis of such errors, and a possible solution to deal with them, have been presented in [6]. Here
we observe that statistical testing naturally obviates to this issue, since the samples are already
assumed to be noisy observations of the true (unknown) values.

We conclude our preliminaries by brie�y describing the empirical scoring methods used in our
analysis (references and further details provided in [6]). For the sake of comparison, Table 1 shows
the total scores earned by QBFEVAL'05 participants according to the methods considered.

CASC Solvers are ranked according to the number of times that result is either sat or unsat. In
case of a tie, solvers faring the lowest cputime averaged over the problems solved are preferred.

QBF evaluation QBFEVAL scoring method is the same as CASC, except that ties are broken
using cputime summed over the problems solved.

SAT competition The last SAT competition uses a purse-based method, i.e., the score of a solver
is obtained by adding up three purses: the solution purse is divided equally among all solvers
that solve a problem; the speed purse is divided unequally among all the competitors that solve
a problem according to their relative speed; �nally, the series purse is divided equally among
all the solvers that solve at least one problem in a family of related instances (series).

Borda count Given n solvers, each voter (instance) ranks the candidates (solvers) in ascending
order considering the value of the cputime �eld. Let ps,i be the position of a solver s in the
ranking associated with instance i (1 ≤ ps,i ≤ n). The score of s is Ss,i = n − ps,i. In case of
time limit attainment and failure, Ss,i = 0. The total score Ss of a solver s is the sum of all
the scores Ss,i.

Range voting Similar to Borda count, whereas an arbitrary scale is used to associate a weight
wp with each of the n positions and the score Ss,i is computed as Ss,i = wp · ps,i (default to 0
in case of time limit attainment or failure).

Schulze's method We denote as such an extension of the method described in Appendix 3 of [9].
Since Schulze's method is meant to compute a single overall winner, we extended the method
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according to Schulze's suggestions [10] in order to make it capable of generating an overall
ranking.

YASM This method (named YASMv2 in [6]) is in�uenced by three factors, namely (i) a Borda-
like positional weight (ii) the relative hardness of the instances, and (iii) the relative speed of
the solver with respect to the fastest solver on the instance.

3 Assessment of Empirical Scoring

In this section we summarize the results obtained considering the above mentioned scoring methods
and the following e�ectiveness measures.

Homogeneity The rationale behind this measure is to verify that, on a given test set, the scoring
methods considered (i) do not produce exactly the same solver rankings, but, at the same
time, (ii) do not yield antithetic solver rankings. We compute homogeneity with the Kendall
rank correlation coe�cient τ and, considering QBFEVAL'05 data, only two pairs of methods
(QBF-CASC and Schulze-Borda) show perfect agreement (τ = 1), while all the other pairs
agree to some extent, but still produce di�erent rankings (see [6] for the homogeneity table).

Fidelity We proposed �delity in [6] to check whether the scoring methods introduce any distortion
with respect to the true merits of the solvers. Of course, we have no way to know such merits.
Thus we measure �delity by feeding each scoring method with �white noise�, i.e., a table Runs
�lled with random results so we know in advance that the (synthesized) merit of the competitors
is approximately the same, and we can measure distortions with respect to this pattern. In [6]
we consider the percent ratio F between the lowest score and the highest one: a higher value
of F implies higher �delity. In [6] we show that YASM, yielding the highest value of F among
all the scoring methods, is the method with the highest �delity.

RDT-, DTL-, and SBT-stability Stability on a randomized decreasing test set (RDT-stability),
and stability on a decreasing time limit (DTL-stability) are meant to measure how much a scor-
ing method is sensitive to perturbations that diminish the size of the original test set, and how
much a scoring method is sensitive to perturbations that diminish the maximum amount of
CPU time granted to the solvers, respectively. However, in [6] we conclude that these two
measures do not help to discriminate among the scoring methods. Stability on a solver biased
test set (SBT-stability), measures how much a scoring method is sensitive to a test set that is
biased in favor of a solver. A high SBT-stability coupled with a high �delity is a good indicator
that the method is able to detect the absolute merit of the solvers. YASM performance in terms
of SBT stability lies in between CASC/QBF and SAT, on one side, and voting systems, on the
other side. In [6] we report that YASM turns out to be, on average, better than CASC/QBF
and SAT, while it is worse, on average, than the methods based on voting systems. However,
YASM o�ers the best compromise between SBT-stability and �delity.

SOTA-relevance This measure (see, e.g., [6]) is meant to capture the relationship between the
ranking obtained with a scoring method and the strength of a solver, as witnessed by its
contribution to the SOTA solver, i.e., the ideal solver that always fares the best time among
all the participants. The results presented in [6], show that CASC/QBF methods turn out to
have the highest SOTA-relevance (τ = 1), while YASM is only third best with τ = 0.79.

4 Empirical Scoring and Statistical Testing

As anticipated in Section 1, we have no direct means of assessing the signi�cance of the results
obtained by an empirical scoring method like YASM. Indeed, even if we can do this indirectly using
the measures presented in the previous Section, there is no guarantee that the results obtained will
apply to a di�erent set of solvers and/or problem instances. On the other hand, if we rephrase the
problem in terms of statistical hypothesis testing, then we can check for statistically signi�cant
di�erences in the performances of the solvers and validate our conclusions within some stated
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con�dence level. Let us start by introducing a null hypothesis and an alternative hypotheses that
are appropriate in our context. Given any two solvers A and B we can state the:

null hypothesis (H0), i.e., there are no signi�cant di�erences in the performances of A with
respect to the performances of B; and the

alternative hypothesis (H1), i.e., there are signi�cant di�erences in the performances of A with
respect to the performance of B.

In the following, let XA and XB be the vectors of run-time values associated to solver A and solver
B, respectively. Before applying statistical methods to QBFEVAL'05 data, we must decide (i) how
to consider missing values, i.e., timeout and fail values, and (ii) which assumptions, if any, can be
made about the run-time distributions. The above issues have an impact over the speci�c method
that we can apply to test H0, because some methods cannot deal with missing values in XA and
XB seamlessly, and most methods require binding assumptions about the underlying distribution
of XA and XB .

Considering QBFEVAL'05 data, after removing the instances where all the solvers either fail
or reach the time limit, there are two possible models to deal with the remaining missing values:
failure-as-time-limit (FAT) model, and time-limit-as-failure (TAF) model. In the FAT model, each
time that a solver fails or exceeds the time limit, we default its run time to the time limit. This
model (used, e.g., in [11]) consistently overestimates the performances of the solvers, but allows
the paired comparison of the values in XA and in XB . In the TAF model, each time a solver fails
or exceeds the time limit, we simply disregard the data point. In this way overestimation does not
occur, but since the vectors XA and XB may not be equal in length, the paired comparison of
run-times is not generally possible.

Given FAT and TAF data models, we may ask whether an underlying normal distribution of
run-times can be assumed. If so, well-known classical techniques like paired t-tests or Analysis of
Variance (ANOVA) [12] could be used to test for H0. Thus, for each solver A, we check XA under
FAT and TAF models using the Shapiro-Wilk [12] test of the null hypothesis that the XA's are
obtained from a normally distributed population. All such tests yield p-values in the order of 10−27

for the FAT model, and of 10−24 for the TAF model, indicating that it is highly unlikely that
the run-time distribution of some solver is anywhere close to normal.1 Because of this, we must
resort to non-parametric tests. Inspired by [3], we consider the Wilcoxon signed rank (WSR) test,
a non-parametric alternative to the classical paired t-test, whereby the null hypothesis states that
XA and XB do not di�er in a signi�cant way (see, e.g., Ch. 12a of [8]). The WSR test is applicable
as long as:

1. the paired values of XA and XB are randomly and independently drawn;
2. the dependent variable (i.e., the run-time) is intrinsically continuous; and
3. it makes sense to compare the values in XA and XB .

Both FAT and TAF models ful�ll the above conditions, but considering the mechanics of the WSR
test, we see that it requires the vector XA − XB to be computed. Therefore, it can be applied
only in the context of the FAT model. In order to cope with the TAF model, we consider the
Wilcoxon rank sum test, also known as Mann-Whitney test (see, e.g., Ch. 12a of [8]). Such test,
that we call hereafter Mann-Whitney-Wilcoxon (MWW) test, is a non-parametric test of di�erence
between XA and XB , and it can accommodate for unequal lengths of XA and XB . In particular,
MWW is applicable as long as conditions 2 and 3 above hold, and it requires that the values of XA

and XB are independently drawn: since in our case the data are (positively) dependent, MWW
gives approximate, although conservative, solutions. In the following, all the data and the results
extrapolated from the WSR and MWW tests are implicitly referred to the FAT and TAF models,
respectively.

1We performed all the statistical computations described in this Section using R [13]. Our data tables
and R macros are downloadable from http://www.star.dist.unige.it/~tac/Publications/2006_EMAA.
tar.gz.
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openQBF qbfbdd QMRes quantor semprop ssolve WalkQSAT
WSR MWW WSR MWW WSR MWW WSR MWW WSR MWW WSR MWW WSR MWW

qbfbdd <0.001 <0.001 � � � � � � � � � � � �
QMRes 0.003 <0.001 <0.001 1.000 � � � � � � � � � �
quantor <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 � � � � � � � �
semprop <0.001 <0.001 <0.001 0.982 <0.001 0.020 <0.001 0.003 � � � � � �
ssolve <0.001 <0.001 <0.001 0.982 0.059 0.024 <0.001 0.002 0.031 1.000 � � � �
WalkQSAT <0.001 <0.001 <0.001 0.161 0.521 <0.001 <0.001 0.566 <0.001 0.982 <0.001 0.982 � �
yQuaffle <0.001 <0.001 <0.001 1.000 0.018 0.057 <0.001 <0.001 <0.001 1.000 0.521 1.000 <0.001 0.646

Table 2. p-values of Wilcoxon signed rank (WSR) and Mann-Whitney-Wilcoxon (MWW) tests.

The results of the pairwise WSR and MWW tests on QBFEVAL'05 data are shown in Table 2.
In the Table, for each pair of solvers A (row) and B (column) we report the p-value adjusted for
multiple comparisons of the pairwise WSR tests and pairwise MWW tests. Before analyzing the
results of Table 2 it is worth mentioning that adjustment of the p-values is necessary, because
performing multiple comparisons raises the risk of obtaining positive results just by the e�ect
of chance (a fact that follows from Bonferroni inequalities [14]). We applied Holm's adjustment
method that, according to [13], is more e�ective than the well known Bonferroni's method [14].
Both methods give strong control on the family wise error rate, i.e., the probability that the
number of overall false rejections (false positives) is greater or equal to one. In [3] the authors
use a di�erent correction, i.e., they compute the overall α0 using α0 = 1 − (1 − α)(1/n), where α
is the con�dence level of each test and n is the number of tests performed. However, in [14], the
latter kind of correction is said to be less generally valid than Bonferroni's (and thus also Holm's)
method. With this proviso, since we wish to extrapolate a partial order of the solvers in terms of
their relative speed performances at a 99% con�dence level, we reject H0 only when the p-value
shown in Table 2 is less than 0.01. By looking at Table 2 we can see that the WSR test �nds most
pairwise comparisons signi�cant at an overall 99% con�dence level. On the other hand, the MWW
test yields more conservative results, i.e., 9 comparisons that are signi�cant for the WSR test fail
to be so for the MWW test, and only 1 comparison that is not signi�cant for the WSR test is
indeed signi�cant for the MWW test. In Table 2, we highlight in boldface the cases in which the
two tests are found disagreeing about the signi�cance of the di�erence in terms of performances.
Notice that WSR and MWW tests are more sensitive to a consistent, albeit small, di�erence in
performances rather than occasional, albeit large, di�erences.

In Figure 1, we represent two partial orders of the solvers in terms of their performances derived
from QBFEVAL'05 data and the results of Table 2. The partial order on the left of Figure 1 is
based on the results of the WSR test, while the one on the right is based on the results of the
MWW test. Both partial orders are obtained by drawing an edge from A to B whenever there is a
signi�cant di�erence in performances between A and B, while the direction of the edge is obtained
considering the pairs (xA, xB) such that xA ∈ XA and xB ∈ XB and computing the ratio R(A,B)
between (i) the number of pairs such that xA < xB and (ii) the number of pairs such that xB > xA

(ties are thus excluded): if R(A,B) > 1, then A is faster than B. In Figure 1 we label each directed
edge from A to B with the value of R(A,B) and we omit the links that can be extrapolated by
transitive closure. The calculation of R is inspired by the WSR test mechanics and, as such, it is
meant to re�ect consistent di�erences in performances rather than occasional large gaps. Looking
at Figure 1 we can see that the partial order induced by the results of the WSR test is compatible
with the one induced by the results of the MWW test, although the latter is less constrained than
the former.

We can now compare the snapshots of QBFEVAL'05 data o�ered by YASM and the other
empirical scoring methods (Table 1) with the ones o�ered by statistical testing (Figure 1). The
�rst observation is that all the rankings produced by the scoring methods are compatible with the
partial orders of Figure 1 with the only exception of SAT, which ranks QMRes above semprop,
while there is a consistent and signi�cant di�erence in performances detected by the WSR test
that, together with the value of R(semprop,QMRes), prompts us otherwise. However, notice
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Fig. 1. Partial order of the solvers in terms of their relative speed performances extrapolated from the
results of Wilcoxon signed rank (left) and Mann-Whiteny-Wilcoxon (right) tests.

that according to the MWW test, such di�erence is not signi�cant at the 99% con�dence level.
The second observation is that, looking at Figure 1 we can see thatQMRes, ssolve and yQuaffle
are found essentially �incomparable� by the WSR test, and, indeed, the ranking of such solvers is
essentially the only part where the scoring methods di�er. In particular, if we consider the relative
performance index o�ered by R(semprop, B), where B is one of QMRes, ssolveand yQuaffle,
we can see that only Borda count and Schulze's method rank the three solvers according to the
reverse order of the corresponding edge labels. On the other hand, according to the MWW test
(Figure 1, right), also semprop is incomparable to the above three solvers, but semprop always
ranks second best according to all the scoring methods (with the above mentioned exception of
SAT). Finally, let us consider the total orders extracted by the partial ones of Figure 1 by proceeding
top-down and breaking the ties considering the edge labels in reverse order. If we compare the total
orders thereby obtained with those resulting from Table 1 using the Kendall coe�cient, then we
can observe the following. Comparing the WSR- and MWW-based total orders yields τ = 0.93,
an almost perfect agreement tainted only by the di�erent classi�cation of semprop and ssolve.
Considering the empirical scoring methods, it turns out that the WSR-based total order yields
τ = 1 in the case of Borda count and Schulze's method, and τ < 1 in all the other cases, with
YASM being the closest (together with range voting) at τ = 0.86. In the case of the MWW-based
total order, τ < 1 for all the empirical scoring methods considered: YASM, with τ = 0.79 is closer
than both SAT (τ = 0.64) and CASC/QBF (τ = 0.76), but range voting (τ = 0.79), Schulze's
method and Borda count (both at τ = 0.93) are even closer.

5 Conclusions

Summing up, the analysis presented in this paper con�rmed that statistical tests can provide an
essential complement to any empirical scoring method in order to check whether the rankings
thereby obtained are not due to chanche alone. However, we believe that the widespread adoption
of statistical testing in the automated reasoning community has to be supported by further inves-
tigation. In particular, it is not clear whether the current statistical tools are adequate for the kind
of distributions that can be ascribed to hard combinatorial problems, and whether such tools can
scale smoothly to handle the large amount of data involved in the running of competitions or other
empirical investigations concerning automated reasoning systems.
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