
The Attainment-Function Approach to

Stochastic Multiobjective Optimiser

Assessment and Comparison
C. M. Fonseca,1 V Grunert da Fonseca1,2

1 Centre for Intelligent Systems, University of Algarve 2 INUAF



Outline

1. Background

2. The attainment function approach

3. Second-order moment measures

4. Comparing optimiser performance

5. Experimental results

6. Quality indicators revisited

7. Modelling performance

8. An integrated view of performance

9. Concluding remarks



1. Background

• Optimiser quality is intimately related to

– the quality of the solutions produced

– the time taken to produce them

– the difficulty of the problem considered

• Problem difficulty depends on problem size and/or configuration (hard

to quantify)

• For stochastic optimisers, both run time and solution quality are random,

and are associated with some probability distribution

• An optimisation run samples from the corresponding distributions, much

like an estimator



1. Background

• Performance criteria (for estimators and optimisers):

Location Typically, how close to the true/theoretical value?

SpreadTypical variability, best and worst-case behaviour

Tractability Can this behaviour be modelled?

• Current practice. . .

– Solution quality and run time usually studied independently from

each other, other factors kept fixed

– Emphasis on one-off and typical behaviour (especially location),

tractability not always a concern



1.1. Run time (Hoos and Sẗutzle, 1998)

1.1.1. Experimental setup

• Execute algorithm n times on a given problem until a valid solution is

found or cutoff time tmax is reached

• Record number of successful runs, k, and the corresponding run time of

each one, ti, i = 1, . . . ,k

1.1.2. Data analysis (univariate)

• Empirical distribution function, sample statistics

• Estimate mean run time from experimental data, accounting for unsuc-

cessful runs:

Ê(T) =
1
k

k

∑
i=1

ti +
n−k

k
tmax



1.2. Solution quality – Single objective

1.2.1. Experimental setup

• Execute algorithm n times on a given problem until a given stopping

criterion is met (maximum runtime, convergence, etc.)

• Record best objective value found in each run, xi, for i = 1, . . . ,n

1.2.2. Data analysis (univariate)

• Empirical distribution function, sample statistics

• Normality can seldom be assumed

• Hypothesis tests (applies to run time, too)



1.3. Solution quality – Multiple objectives

1.3.1. Experimental setup

• Execute algorithm n times on a given problem until a given stopping

criterion is met (maximum runtime, convergence, etc.)

• Record all non-dominated objective vectors found in each run,

{x1i,x2i, . . . ,xmi i}, for i = 1, . . . ,n

1.3.2. Data analysis

• Each {x1i,x2i, . . . ,xmi i} is a set of non-dominated points in objective space

• These non-dominated point (NDP) sets are random

• How can their stochastic behaviour be described?



1.3. Solution quality – Multiple objectives

1.3.3. Example

x1

x2 x3

1.4. Quality indicators

• Transform NDP sets into real values or real vectors

• More conventional statistical analysis

• Lose some information in the process (how much?)



2. The attainment function approach
(Grunert da Fonsecaet al, 2001)

• Considers the region attained by each non-dominated point set

• Studies the set distributions directly through their moments

• Higher-order moments provide additional information

Yx1

x2
x3



2. The attainment function approach

Definition 1 (Random non-dominated point set)

X = {X1, . . . ,XM ∈Rd : P(Xi ≤ Xj) = 0, i 6= j},

Definition 2 (Attained set)

Y = {y∈Rd | X1 ≤ y ∨ X2 ≤ y ∨ . . .∨ XM ≤ y}

= {y∈Rd | X E y}

• The distributions of random sets X and Y are equivalent

Definition 3 (Attainment indicator)

bX (z) = I{X E z}

• The binary random field {bX (z),z∈Rd} provides yet

another way to look at the distribution of X



2.1. First-order attainment function

Definition 4 (Attainment function)

αX (z) = P
(
bX (z) = 1

)
• Probability of attaining a given goal z

• First-order moment measure of the binary random field {bX (z),z∈Rd}

• Describes the location of the Pareto-set approximations

• Reduces to the multivariate distribution function when M = 1

• Can be estimated from experimental data

Definition 5 (Empirical attainment function (EAF))

αn(z) =
1
n
·

n

∑
i=1

bi(z)



2.1. First-order attainment function

2.1.1. EAF example
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2.1. First-order attainment function

2.1.2. Another EAF example
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3. Second-order moment measures
(Fonsecaet al, 2005)

3.1. Second-order attainment function

Definition 6 (Second-order attainment function)

α(2)
X (z1,z2) = P

(
bX (z1) = 1 ∧ bX (z2) = 1

)
• Probability of attaining two goals simultaneously

• Second, non-centred, moment of {bX (z),z∈Rd}

• Can be estimated from experimental data

Definition 7 (Second-order empirical attainment function)

α(2)
n (z1,z2) =

1
n
·

n

∑
i=1

bi(z1) ·bi(z2)



3.1.1. Second-order EAF visualization

With a fixed goal z∗ ∈R2
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3.1.1. Second-order EAF visualization

With a different fixed goal z∗ ∈R2
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3.2. Covariance function

Definition 8 (Covariance function)

covX (z1,z2) = α(2)
X (z1,z2)−αX (z1) ·αX (z2)

• Second, centred, moment of {bX (z),z∈Rd}

• Indicates how likely two different goals are to be attained together in

the same run in comparison to being attained independently in different

runs

• Can be estimated from experimental data

Definition 9 (Empirical covariance function (ECF))

covn(z1,z2) = α(2)
n (z1,z2)−αn(z1) ·αn(z2)



3.2.1. Empirical covariance function visualization

Covariance function values greater than 0.21
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3.3. Empirical covariance function visualization

Covariance function values less than −0.21

100 101 102100

101

u
rms

y rm
s

MOGA-B



4. Comparing optimiser performance

Performance may be compared through EAF-based hypothesis tests

4.1. First-order attainment function comparison

H0 : αXA(z) = αXB(z) for all z∈Rd

vs.

H1 : αXA(z) 6= αXB(z) for at least one z∈Rd,

• Reject if the test statistic Dn,m = supz∈Rd |αA
n(z)−αB

m(z)| is large

• Permutation argument allows critical values to be obtained



4.2. Second-order attainment function comparison

H0 : α(2)
XA

(z1,z2) = α(2)
XB

(z1,z2) for all z1,z2 ∈Rd

vs.

H1 : α(2)
XA

(z1,z2) 6= α(2)
XB

(z1,z2) for at least one pair (z1,z2) ∈Rd×Rd,

• Reject if

D(2)
n,m = sup

z1,z2∈Rd

|αA(2)
n (z1,z2)−αB(2)

m (z1,z2)|

exceeds the (1−α)-quantile of the permutation distribution of the test

statistic under H0

• One-sided tests could be formulated in a similar way



5. Experimental results

• First example based on a multiobjective LQG controller design problem,

under complexity constraints

– MOGA-A (no niching) vs. MOGA-B (sharing and mating restriction)

– Two sets of 21 runs for 100 generations

• Second example based on a multiobjective TSP instance

– PLS-A (2-opt neighbourhood) vs. PLS-B (2H-opt)

– Two sets of 25 runs until archive contained only local optima

• 10000 permutations used to estimate critical values



5.1. Pareto-set approximation statistics

No. of elements

Optimiser No. of runs min average max

MOGA-A 21 48 120.38 191

MOGA-B 21 87 170.95 259

PLS-A 25 1973 2386.1 2891

PLS-B 25 2052 2541.5 3032



5.2. First-example

5.2.1. Empirical covariance function

Covariance function values less than −0.21
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5.2. First-example

5.2.1. Empirical covariance function

Covariance function values less than −0.21
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5.2. First-example

5.2.1. Empirical covariance function

Covariance function values greater than 0.21
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5.2. First-example

5.2.1. Empirical covariance function

Covariance function values greater than 0.21
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5.2. First-example

5.2.2. Second-order EAF test (α = .05)
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5.3. Second example

5.3.1. EAF contour plots

2 3 4 5 6 7 8 910 20
2

3

4

5
6
7
8
9

10

20

kroA100   (× 104)

kr
oB

10
0 

  (
× 

10
4 )

2 3 4 5 6 7 8 910 20
2

3

4

5
6
7
8
9

10

20

kroA100   (× 104)

kr
oB

10
0 

  (
× 

10
4 )

PLS-A PLS-B



5.3. Second example

5.3.2. Hypothesis test results (α = .05)
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5.4. Result summary

No. of elements

Optimiser No. of runs min average max

MOGA-A 21 48 120.38 191

MOGA-B 21 87 170.95 259

PLS-A 25 1973 2386.1 2891

PLS-B 25 2052 2541.5 3032

Hypothesis test results (α = .05)

Optimiser Hypothesis test Test statistic Critical value p-value decision

MOGA 1st-order EAF 0.571 0.571 0.091 do not reject H0

MOGA 2nd-order EAF 0.762 0.714 0.016 reject H0

PLS 1st-order EAF 0.680 0.560 0.004 reject H0

PLS 2nd-order EAF 0.840 0.720 0.002 reject H0



6. Quality indicators revisited

• Quality indicators transform NDP sets into real values

• If the multiobjective optimiser is stochastic, both outcome NDP sets

and quality indicator values will be random

• The quality indicator distribution depends only on the underlying random

NDP set distribution

• It must be possible to describe it as a function of an attainment function

of sufficiently high order

• Results should be both of theoretical and of practical value



6.1. Example: The unary ε-indicator

• May be written as (Z is the reference set)

Iε,Z(X) = inf
{

ε ∈R+ : X E ε ·z, ∀z∈ Z
}

= inf

{
ε ∈R+ : ∏

z∈Z

bX(ε ·z) = 1

}

• Has distribution function

P
[
Iε,Z(X )≤ c

]
= α(k)

X (c·z1,c·z2, . . . ,c·zk)

given a reference set Z = {z1,z2, . . . ,zk}

• In particular, when Z = {z},

P
[
Iε,Z(X )≤ c

]
= αX (c·z)



7. Modelling performance

7.1. Run time (Hoos and Sẗutzle, 1998)

• Run-time distributions may be related to the exponential distribution

• Doing so may help decide, e.g., when an algorithm should be restarted

• Other survival-time distributions (e.g., Weibull)

7.2. Solution quality (Hüssler et al., 2003)

• Solution-quality distributions may be related to the Weibull extreme

value distribution, at least in certain ideal cases

• The parameters of the Weibull distribution generally depend on the

function being optimised, and may give information about,

e.g., whether the optimum is likely to be close or far away



8. An integrated view of performance

• The best-so-far trace of a single-objective optimisation run represents

an observed run-time/solution-quality tradeoff

• In general, the observed performance in an n-objective optimisation run

can be described through an augmented, n+ 1-objective NDP set, in-

cluding the run-time dimension

• The distribution of such NDP sets may be studied through empirical

attainment functions

• The Weibull distribution is both an extreme value distribution and a

distribution used in survival analysis, and has been shown to be useful

in modelling both run-time and solution-quality behaviour of optimisers

• Parametric models of attainment functions, valid under

certain ideal conditions, are (still) under development.



9. Concluding remarks

• Optimiser performance involves many criteria

• Many of the questions faced when addressing optimiser performance are

similar to those addressed at the optimisation stage

• Other relevant questions pertain to experimental methodology

• First-order attainment function describes the distribution of random

NDP sets in terms of location

• Covariance function provides insight into the dependencies within the

NDP sets

• Second-order attainment function favours multiple good

solutions



9. Concluding remarks

• Hypothesis tests enable comparison of optimisers

• Multiple comparisons still need to be addressed

• The attainment-function methodology is fully usable with two objectives

(computational developments still needed for more dimensions)

• Provides a theoretical basis for analysing other quality indicators

• Supports combined time-quality performance evaluation

• Scalability of optimisers is also a performance-related question

• Did you say “sadistics”?
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