
Stochastic Local Search Algorithms

for Graph Set T -Colouring and Frequency Assignment

Marco Chiarandini∗

University of Southern Denmark, IMADA, Odense, Denmark
<marco@imada.sdu.dk>

Thomas Stützle
Université Libre de Bruxelles, CoDe, IRIDIA, Brussels, Belgium

<stuetzle@ulb.ac.be>

Abstract

The graph set T -colouring problem (GSTCP) generalises the classical graph colour-
ing problem; it asks for the assignment of sets of integers to the vertices of a graph
such that constraints on the separation of any two numbers assigned to a single vertex
or to adjacent vertices are satisfied and some objective function is optimised. Among
the objective functions of interest is the minimisation of the difference between the
largest and the smallest integers used (the span).

In this article, we present an experimental study of local search algorithms for solv-
ing general and large size instances of the GSTCP. We compare the performance of
previously known as well as new algorithms covering both simple construction heuris-
tics and elaborated stochastic local search algorithms. We investigate systematically
different models and search strategies in the algorithms and determine the best choices
for different types of instance. The study is an example of design of effective local
search for constraint optimisation problems.

1 Introduction

The graph set T -colouring problem (GSTCP) is a generalisation of the graph (vertex)
colouring problem (GCP) that was introduced to model the assignment of frequencies to
radio transmitters [22]. In the GSTCP, one is given a graph, a number of colours required
at each vertex and separation constraints for each vertex and for each pair of connected
vertices. Colours correspond to nonnegative integers and the separation constraints repre-
sent the disallowed differences between the integers assigned to each vertex. The decision
version of the GSTCP asks, given a number of colours, for an assignment of sets of colours
to the vertices of the graph such that all constraints are satisfied. Such an assignment is
called a set T-colouring. There are various optimisation versions of the GSTCP, which
differ in the objective function to be minimised [22, 49]. One version asks to determine
the T -order (or T -chromatic number), that is, the minimal number of integers, such that
a set T -colouring exists. A second optimisation version asks to determine the T -span, that
is, the minimal difference between the largest and the smallest integers such that a set
T -colouring exists. Another alternative, sets a bound on the number of available colours
and asks for a set T -colouring that minimises the number of constraint violations.

∗Corresponding author.

1

The GSTCP is at the core of a number of real-world applications. Examples are
traffic phasing, fleet maintenance [44] and task assignment. In this latter case, a large
task is divided into incompatible subtasks (for example, due to resource conflicts) and the
problem is to assign a set of time periods to each subtask such that incompatible subtasks
are treated in different time periods [49]. The most important GSTCP application is
in the assignment of frequencies to radio transmitters. In this case, vertices represent
transmitters and colours the frequencies to be assigned to the transmitters subject to
certain interference constraints, the T -constraints [22]. These T -constraints are expressed
in the form of restrictions on the possible separations of the frequencies at each vertex and
between the vertices.

In the frequency assignment application, there are two possible scenarios of interest:
the design scenario, in which it has to be decided which frequency band to acquire in order
to satisfy a forecast network utilisation; and the planning scenario, in which the frequency
band available at the provider is fixed and it must be decided which frequencies to assign to
each cell such that the service is maximised.1 The first scenario corresponds to minimising
the span while the second scenario to minimising the number of violated constraints. In
this latter case, penalties can then be associated to disallowed separations and acceptable
interferences are weighted differently from forbidden interferences. This gives rise to the
minimal interference problem, where the total penalty has to be minimised [1, 17]. As
we will see, most of the solution methods discussed in this article are valid for both
scenarios. Indeed, following a known practice in the constraint satisfaction community [36],
the minimal span problem can be approached by solving a series of minimal interference
problems.

The GSTCP has received significant attention from both the theoretical and the algo-
rithmic perspective. The theoretical contributions often focus on special types of instances
and provide results that might be roughly grouped into three classes: computational com-
plexity [44, 49, 20, 21], lower bounds [2, 28, 47, 37] and approximation schemes [45, 27].2

The algorithmic contributions on the GSTCP are mostly linked to the research on
frequency assignment and, more recently, to the “Computational Challenge on Graph
Colouring and its Generalisations”, which was organised by Johnson, Mehrotra and Trick.3

The problem is also relevant to the constraint satisfaction community [15] although little
experimental research has been conducted on constraint programming models [52]. Math-
ematical programming approaches are instead described in [17, 1]. However, complete
search algorithms have proven to be inefficient when applied to general and large scale
instances, which are more of interest for practical applications.

Stochastic local search (SLS) algorithms, although incomplete, obtain typically much
better quality solutions that the complete algorithms in practicable times and, hence, have
also been more studied. Costa is the first to address the GSTCP by means of heuristics
and proposes a generalisation of the DSATUR heuristic for the GCP [12]. Dorne and
Hao apply tabu search to very large, randomly generated GSTCP instances [16]. In the
context of the COLOR02/03/04 DIMACS challenge, Phan and Skiena devised a simu-

1Both cases of frequency assignment give rise to what is called, more precisely, the fixed channel
assignment problem, whose name is used to emphasise that the model is static, i.e., the set of connections
remains stable over time.

2Theoretically driven research on the GSTCP was also the target of the DI-
MACS/DIMATIA/Renyi Working Group on Graph Colourings and their Generalizations; see
<http://dimacs.rutgers.edu/Workshops/GraphColor/main.html> (Last update: January 10, 2005) for
more details.

3M. Trick. “Computational Series: Graph Coloring and its Generalizations.”, 2002,
<http://mat.tepper.cmu.edu/COLOR04>. In this challenge, the GSTCP is called bandwidth multi-colouring
problem.

2

lated annealing algorithm using their general-purpose platform Discropt [39]. Prestwich
presented a randomised backtracking algorithm [42] while Lim et al. designed a squeaky
wheel algorithm [31, 32]. This latter approach also gives the best results for the benchmark
instances that were proposed in the COLOR02/03/04 DIMACS challenge. However, from
the published results it is unclear how this algorithm compares with the earlier proposed
tabu search algorithm by Dorne and Hao [16]. In general, we noted a tendency in this area
to publish horse-race type papers that present new best performing algorithms but rarely
compare them directly or study the algorithm components that determine the success.

The main contribution of this article is a systematic study of previously known and new
construction heuristics as well as advanced SLS algorithms for the GSTCP, with the goal
to bring instructive insights into the design and implementation of efficient local search
algorithms for this constraint optimisation problem. We have decided to (re)-implement
all the algorithms using the same framework, data structures, platform and implementer’s
ability to increase the fairness of the experimental comparison. Our benchmark collection
comprises several sets of randomly generated instances including random graphs and ge-
ometric graphs as well as instances derived from the frequency assignment literature [3].
As a side product, we also extend the set of previously available benchmark instances to
allow for a more systematic study of the influence of instance features on performance.
The experiments are designed in a way to bring light on the sources of differences rather
than only indicating which is the best algorithm. Our analysis, supported by statisti-
cal methods, allows us to investigate (i) which are the key algorithmic features that are
responsible for the good performance of the construction heuristics and SLS algorithms,
(ii) which are the features of the instances that have an influence on the results and, (iii)
which is the current state-of-the-art in GSTCP solving.

We draw two kinds of conclusions. The first is of general character and consists of
indications about modelling constraints in local search. Perhaps the most remarkable is the
fact that we found it helpful to use constraints to reduce the search space size. Although
this might be intuitively clear in the constraint satisfaction community, previous results
have shown that some sort of constraints, like those for symmetry breaking, may have
a negative effect on the performance of local search algorithms [43]. Another indication
worth mentioning is that we found convenient solving constrained optimisation problems
as a series of constraint satisfaction problems with bounded objective is more convenient
than using a weighted sum of optimisation objective and infeasibility. The second kind of
conclusions concern specifically the GSTCP. We show that the best construction heuristic
for this problem is a generalisation of DSATUR that chooses vertices in a different order
to that proposed in previous researches and that the best performing SLS algorithms are a
squeaky wheel algorithm and a new tabu search algorithm with a novel randomised exact
search neighbourhood.

The paper is organised as follows. Section 2 introduces the notation and provides some
basic results. Section 3 defines the benchmark instances. Section 4 describes construc-
tion heuristics which are empirically assessed in Section 5. Section 6 is dedicated to the
description of the SLS algorithms. Section 7 reports the experimental analysis on SLS
algorithms. Finally, Section 8 resumes the results of this work.

2 Definitions, Notation and Basic Results

The GSTCP is defined by

(i) an undirected graph G = (V,E), where V is the set of vertices and E ⊆ V × V is
the set of edges, with uv representing an edge in E;

3

(ii) a set of integers (called colours) Γ;

(iii) a number r(v) of required colours for each vertex v ∈ V ; and

(iv) a collection T of sets (called T-sets), such that there is a set Tuv for each edge
uv ∈ E and a set Tu for each vertex u ∈ V . The T-sets are sets of nonnegative
integers and represent the disallowed separations of colours between and within
vertices, respectively.

The task in the decision version of the GSTCP is to find, for a given number of k = |Γ|
colours, a mapping ϕ : V 7→ P(Γ) such that the three following groups of constraints

|ϕ(v)| = r(v) ∀ v ∈ V (1)

|x− y| 6∈ Tu ∀u ∈ V, ∀x, y ∈ ϕ(u), x 6= y (2)

|x− y| 6∈ Tuv ∀uv ∈ E, ∀x ∈ ϕ(v), ∀y ∈ ϕ(u) (3)

are satisfied. The three groups of constraints are called requirement constraints, vertex
constraints, and edge constraints, respectively. We call a mapping ϕ a proper set T-
colouring if all constraints are satisfied and improper, otherwise.

The graph T -colouring problem (GTCP) is a special case of the GSTCP, with r(v) = 1
for all v in V and only the edge constraints are present. Both, the decision versions of the
GSTCP and the GTCP are obviously in NP and, hence, also NP-complete, since they
are generalisations of the k-colouring problem [19].

Any GSTCP instance defined by a graph G = (V,E), a collection T and vertex re-
quirements r(v) for each v ∈ V has an equivalent GTCP instance GS = (V S , ES) such
that the existence of a proper T -colouring in the GTCP instance implies that there exists
a proper set T-colouring in the GSTCP instance (and vice versa). The equivalence is
shown by the construction of the GTCP instance. GS is obtained from G by creating a
vertex u for each requirement of a vertex v ∈ V (G) such that |V S | =

∑
v∈V r(v). In GS ,

the vertices u ∈ V S derived from a vertex v ∈ V form a clique of order r(v) in which each
edge receives the set of constraints Tv ∈ T . Every such vertex is then connected with each
vertex of the clique induced by another vertex w ∈ V , if vw ∈ E. The colour separation
associated with these edges is Tvw. The graph GS is called split graph.

Two properties of a proper (set) T -colouring ϕ are of interest for its quality: the order,
i.e., the number of different colours effectively used by ϕ and the span, i.e., the maximal
difference between the colours used: maxu,v∈V {|x−y| : x ∈ ϕ(v), y ∈ ϕ(u)}. The minimum
order for which a proper T -colouring exists is called the (set) T -chromatic number χT (G);
the minimum span is the (set) T-span spT (G). Minimising the order, the span or both is
the objective in the optimisation versions of the GSTCP. For all graphs G and T -sets T it
holds that χT (G) ≤ spT (G) [22]. Note that χT (G) = χT (GS) and spT (G) = spT (GS) and,
hence, the solution to a GSTCP can be found by solving the GTCP on the split graph.

For the GTCP, it was proved that the T -chromatic number of a graph G, χT (G), is
equal to the chromatic number χ(G) [13]. However, Hale (1980) [22] pointed out that
minimising the span of a T -colouring is different from minimising the order, or the span
of a colouring without the T -constraints. There are cases, indeed, where no optimal span
T -colouring gives an optimal order and vice-versa. For example, if the graph G and the
T-set T are those of Figure 1, then χT (G) = 3 and spT (G) = 3 but a T -colouring with
order three has span at least four, whereas a T -colouring with span three has order at
least four.

For the frequency assignment application, more relevant is the case in which all
Tu, Tuv ∈ T consist of consecutive integers {0, 1, . . . , tuv−1} for all uv ∈ E and {0, 1, . . . , tu−

4

(a) The original instance. (b) A solution with 3 colours
and span 4.

(c) A solution with 4 colours
and span 3.

Figure 1: A GTCP instance with χT (G) = 3 and spT (G) = 3 (a). Every solution that uses 3
colours has span at least 4 (b), whereas every solution with span 3 uses 4 colours (c).

1} for all u ∈ V . This particular version of the problem is known as separation distance
GSTCP and the values tu, tuv are called colour distances [17]. The edge and vertex con-
straints then have the form |x− y| ≥ t, where x and y are two assigned integers.

In the rest of the article we assume the GSTCP to be in the separation distance form
and study the minimisation of the set T-span. In each set T-colouring instance we assume
minu∈V {x : x ∈ ϕ(u)} = 1 and, hence, the set T-span to be k − 1, where k is the largest
colour used. In addition, we denote by AG(v) the set of vertices adjacent to a vertex
v ∈ V , i.e., AG(v) = {u|u ∈ V, uv ∈ E}, and by d(v) the degree of a vertex v, i.e., |AG(v)|.

3 Benchmark instances

We use a benchmark suite composed of three sets of random instances that differ in the
structure of the graphs and of the constraints, and a set of instances derived from the
frequency assignment application.

Random geometric instances. This set was proposed by M. Trick in the context
of the “Computational Challenge on graph colouring and its generalisations”. Vertices
correspond to points that are uniformly distributed in a square [10, 000× 10, 000]. Edges
connect vertices whose corresponding points are closer than some pre-defined value. The
separation distances associated to edges are inversely proportional to the distances between
the points. Vertex requirements are chosen uniformly at random from the set {1, . . . , r}
and vertex separation distances are fixed to 10. The size of these instances ranges from
20 to 120 vertices. We denote this set by GEOM, its class of sparse instances by GEOMn and
its classes of denser instances by GEOMna and GEOMnb. The instances GEOMnb have higher
requirements per node than GEOMna. Statistics of this instance set are given in Table 1a.

Random uniform instances. This set was introduced by Dorne and Hao for testing
their tabu search algorithm [16]. The graphs are uniform, random graphs, which are typi-
cally identified as Gnp, where n is the number of vertices and each of the

(
n
2

)
possible edges

is included in the graph with a probability p. Vertex requirements, vertex-distances and
edge-distances are generated according to a uniform distribution in the interval {1, . . . , t}.
Statistics on these instances are in Table 1b. We call this set HD-RU and maintain the
original nomenclature for the single instances: essai.n.R.p where R =

∑
r(v) = |V S |.

5

|V | ρ̄ r tu tuv # instances
20, 30, . . . , 120 0.1 3 10 4.5 –

10 10 4.5 11 (GEOMn)
0.2 3 10 4.5 11 (GEOMna)

10 10 4.5 11 (GEOMnb)

(a) Random geometric instances

|V | p r = tu = tuv # instances
30, 100, 300, 500, 1000 0.1 5 5

0.5 5 5
0.9 5 5

(b) Random uniform instances [16]

|V | p r t # instances
60 0.1 5 5 10

10 10
10 5 10

0.5 5 5 10
10 10

10 5 10
0.9 5 5 10

10 10
10 5 10

(c) New random uniform instances

Inst ρ̄ [rmin; rmax] tu [tmin
uv ; tmax

uv]
P1 0.73 [8;77] 5 [1; 2]
P2 0.49 [8; 77] 5 [1; 2]
P3 0.73 [5; 45] 5 [1; 2]
P4 0.49 [5; 45] 5 [1; 2]
P5 0.73 [20; 20] 5 [1; 2]
P6 0.49 [20; 20] 5 [1; 2]
P7 0.73 [16; 154] 5 [1; 2]
P8 0.73 [8; 77] 5 [1; 2]
P9 0.73 [32; 308] 5 [1; 2]

(d) Philadelphia instances

Table 1: Statistics on the benchmark instances. tu and tuv are used explicitely if the range of values
differs among vertex and edge constraints. ρ̄ gives the measured edge density of the graphs.

Random uniform instances (new). Since we experienced that some of the HD-RU
instances require very high computational times before it becomes unlikely for the algo-
rithms here studied to further improve their solutions, we generated a new set of instances
that are similar to those of HD-RU. The only difference is that vertex requirements are
chosen uniformly at random from the interval {1, . . . , r}, thus, possibly, r 6= t. The val-
ues considered for the parameters and the number of instances generated are reported in
Table 1c. The smaller instance size with respect to the set HD-RU allows us to run ex-
tensive computational tests. We denote this set of instances NRU and each single class as
TG-n-p-r.t.

Philadelphia instances. This set comprises the well-known Philadelphia instances
from the frequency assignment literature [3]. Vertices correspond to 21 hexagons repre-
senting the cells of a cellular phone network. Edges and separation distances are assigned
according to the interferences between sites such that adjacent or close cells have higher
separation constraints than distant cells. For details on the generation of these instances
we refer to the FAP web repository.4 In conformity with the frequency assignment litera-
ture, we denote these instances by P1–P9.

4 Construction Heuristics

Construction heuristics are the fastest methods to generate good quality solutions for
optimisation problems. Another main use is to provide good initial solutions to SLS

4A. Eisenblätter and A. Koster. “FAP web – A website devoted to frequency assignment”. June 2000.
<http://fap.zib.de>. (Last update: January 2007.)

6

algorithms. For the GSTCP, various construction heuristics have been presented. The
most comprehensive study so far by Hurley et al. comprises a number of different sequential
heuristics [26]. They conclude that it is difficult to predict which variant will perform best
on a specific instance; however, their comparison is limited to small size instances of around
20 vertices and no statistical analysis is applied to support the results.

We enlarge the study of construction heuristics for the GSTCP to include in addition
the assignment heuristics proposed in [46] and heuristics that were adapted from the GCP.
Some of the proposed heuristics are new, like the adaption of RLF, or are enhancements
of previously published ones, like generalised DSATUR.

4.1 Split Graph (T -Colouring) Approach

Sequential heuristics. Sequential heuristics iteratively assign colours to vertices until
a complete colouring is reached. Each assignment decision consists of two steps: first, the
vertex that is to be coloured next is chosen, then a colour is assigned to this vertex.

A basic heuristic to assign the colour is the greedy algorithm [13]. This algorithm, which
we denote T-greedy, takes as input a permutation π of the vertices. At each iteration i,
it assigns to the vertex π(i) the colour corresponding to the smallest possible integer such
that the partial T -colouring obtained after colouring the vertex π(i) remains proper. After
|V S | iterations, T-greedy returns a proper complete T -colouring for any graph and T -sets.
An efficient implementation of T-greedy maintains a set of forbidden colours for each vertex
that is still to be coloured and updates it at each iteration. The complexity is O(k|V S |);
note that k is not bounded by the number of vertices.

The permutation π can be determined in a static manner before assigning the colours.
As in the GCP, the vertex degree is the information which is used to order the ver-
tices. We examine the following orders: Random (RO algorithm), Largest First (LF
algorithm) and Smallest Last (SL algorithm). The LF algorithm sorts the vertices in
non-increasing order of their degree. The SL algorithm arranges the vertices such that
the vertex at position i, vπ(i) has the smallest degree in the subgraph G′ ⊂ G induced by
V ′ = {vπ(1), vπ(2), . . . , vπ(i)}. This sequence is determined starting at the final vertex and
proceeding in reverse order. We denote the three heuristics G-ROS, G-LFS, and G-SLS.

Various authors have tested an adjusted vertex degree that uses the additional informa-
tion of the separation distance constraints between adjacent vertices, which is defined as
dT (v) =

∑
u∈AG(v) tuv. We therefore include in our analysis for all the sequential heuristics

two versions, one using the vertex degree and another using the adjusted vertex degree.

Generalised DSATUR heuristics. The DSATUR heuristics are also based on T-
greedy but they generate the order of the vertices in a dynamic manner at construction time
depending on the current partial colouring. The information used is the vertex saturation
degree, i.e., the number of different colours forbidden at the current vertex by the colours
assigned to the adjacent vertices. We denote this generalisation of the DSATUR scheme
to the GTCP as G-DSATUR and study the instantiation of its components.

We examine two sorting strategies: largest saturation first (LSF) and smallest satu-
ration first (SSF). In both cases, ties are broken by the largest vertex degree. As for the
sequential heuristics, we also examine the use of an adjusted vertex degree to break ties.
We observed, however, that ties occur very rarely.

In addition, we consider a modification of the T-greedy algorithm that selects, whenever
more than one previously used colour is feasible, the colour that is feasible for the smallest
number of uncoloured vertices. The idea is to favour the use of colours with less chances
to be used later in the process. We denote this algorithm as T-greedy#. Its worst case

7

complexity when applied to a static vertex order is O(k2|V S |2). Empirical observations
showed that even for high density graphs with ρ(G) = 0.9, where vertices are less likely to
be colourable with previously used colours, this rule applies in about 50% of the decisions
taken.

Generalised RLF heuristic. For the GCP, one of the best performing construction
heuristics, the Recursive Largest First (RLF) heuristic, is based on a partitioning approach.
It iteratively fills colour classes by colouring as many vertices as feasible with the same
colour before using a new colour. When applied to the GTCP, the concept of independent
set is still valid but vertices are also subject to distance constraints and, hence, their
insertion in a set must also guarantee the satisfaction of the separation constraints between
the colours that will be assigned to such sets. We denote this adapted RLF heuristic by
G-RLF. For G-RLF, we also study the effect of an adjusted vertex degree.

4.2 Original Graph (Set T -Colouring) Approach

Sequential heuristics. The T-greedy algorithm can be modified to assign at each con-
struction step r(v) colours to a vertex v. The colour assignment policy remains the same:
priority is given to the smallest possible colours. The order of the vertices can be de-
termined using the same rules (RO, LF, SL) as before. We implemented these heuristics
using both the vertex degree and the adjusted vertex degree.

Assignment heuristics. The heuristics proposed by Sivarajan et al. [46] look at the
problem from an assignment perspective. These heuristics were only studied on instances
with 21 vertices and never compared with the heuristics introduced above. They work at
the level of single vertex requirements. First the requirements are disposed in a matrix of
size |V | ×maxv∈V r(v) whose rows correspond to vertices and the elements of each row to
cyclically shifted versions of the list {1, . . . , r(v)} and zeros. The cylic shifts are organised
in such a way that the number of requirements is almost equally distributed among the
columns. Then an order in the examination of the matrix is decided and the colours
are assigned to the requirements in the order they are visited. Three factors influence the
heuristic procedure: the vertex order (i.e., the order of the rows in the matrix) determined
by the smallest last (C) or the largest first (D) order of an adjusted vertex degree; the
requirement order (i.e., the order of examination in the matrix) determined by row-wise
ordering (R) or column-wise ordering (C); and the assignment policy which may be colour
exhaustive (F) if we assign the smallest colour that does not introduce any violation to
the next requirement, or requirement exhaustive (R) if for each colour in order from 1 to
k we scan all yet uncoloured requirements and assign the current colour to all those for
which it is feasible.

We identify these assignment heuristics by the letter abbreviations as defined above.
For example, CRR refers to a heuristic that uses smallest last vertex order, row-wise
requirement order and an requirement exhaustive assignment policy.

5 Experimental Assessment of Construction Heuristics

The experimental study on construction heuristics aims at identifying the algorithmic
features that have an impact on the heuristics’ performance and the best performing
construction heuristics. In fact, the attempt to distinguish and separate the effects of
the single choices that compose the heuristics is a novelty of this analysis which is made

8

T -colouring approach set T -colouring approach

Sequential
order={RO,LF,SL}
adjust={yes,no}

order={RO,LF,SL}
adjust={yes,no}

DSATUR
adjust={yes,no},order={LSF,SSF},
assign={T-greedy,T-greedy#} –

RLF adjust={yes,no} –

Assignment –
order={C, D},requ.={R, C},
assign={F, R}

Table 2: Implementation choices for the construction heuristics for GSTCP.

possible by a careful organisation and design of experiments. Some of these choices are,
for example, the use of the GSTCP formulation or the GTCP transformation or the use
of an adjusted vertex degree.

Concerning performance, we focus uniquely on the solution quality returned by the
heuristics since for all heuristics, the computational times are negligible being always
below 0.15 seconds on our computer, a 2 GHz AMD Athlon MP 2400+ processor with
256 KB cache and 1GB RAM.5

The different algorithmic choices, whose effects we want to examine, are described in
Table 2. We need to split the analysis into four separate experimental designs, one for each
type of approach, that is, one for each row of the table. We want to distinguish main and
interaction effects of the algorithmic factors and of other factors, such as the instance type.
This latter effect tells us how the relative performance of the algorithms depends on some
features of the instance that can be recognised a-priori. We use the classes of instances
taken from the GEOM and NRU benchmark sets. In addition, we treat the single instances
as blocking factor. Since randomised decisions may occur due to random tie breaking, we
collect for each heuristic 10 runs per instance and measure the span returned in each run.
Then we rank these results for each instance to avoid problems due to different instance
scales.

Sequential Heuristics. We considered four factors: problem representation {GTCP,
GSTCP}, adjusted degree {Y, N}, vertex order {RO, LF, SL} and instance class {GEOM,
GEOMa, GEOMb, TG-120-0.1-5.5, TG-120-0.5-5.5, TG-120-0.9-5.5}. An analysis of variance
(ANOVA) on ranks [38, Section 3-10.2] indicates that only the main effect of instance
class is not signficant. This is due to the transformation in ranks that removes differences
in scale between instances. All other factors’ main effects and interactions are instead
significant and indicate the impossibility to state an algorithmic feature as the most im-
portant without defining first the instance class and the choices for the other features.
Even trying to simplify the presentation of results through regression trees [7, 4] is not
helpful to gain a synthetic view of results. The only choice that seems to be preferable
among the different instance classes is the use of an adjusted vertex degree. However, even
the random vertex order resulted sometimes to be the best heuristic on the classes GEOM
and GEOMa.

DSATUR. We considered the factors: order {LSF, SSF}, adjusted degree {Y, N}, greedy
assignment {T-greedy, T-greedy#}, and instance class (same levels as above). The ANOVA
indicates as significant the main effect of the factors order and adjusted degree and the
interaction of this last one with the instance classes. A closer examination of the com-
putational results showed that the adjusted vertex degree is preferable for all instance

5The output of the benchmark code available from the DIMACS “Computational Challenge” web site
is: DFMAX(r500.5.b) 8.64 (user). The machine runs Debian Linux, the code was implemented in C++

and compiled with gcc and flags -O3.

9

classes, except in the class TG-120-0.1-5.5, where adjusted and non-adjusted vertex de-
gree result in similar performance; this explains why ANOVA indicated as significant
the interaction effect. Hence, we can conclude that G-DSATUR performs better with an
adjusted vertex degree. Note that this is a novel feature with respect to previous imple-
mentations of G-DSATUR. Moreover, a closer examination on the order reveals another
novelty: the preferable order is smallest saturation first. This result contrasts with what
is used in DSATUR in the GCP and with the implementations of generalised DSATUR
in [6, 12, 16, 26]. No significant difference is instead detected between T-greedy and T-
greedy#. Hence, given the worse computational complexity of T-greedy#, T-greedy is to
be preferred. Finally, we additionally tested the suggestion in [26] to colour first vertices
in the largest clique but we could not detect any improvement.

RLF. We study the factor adjusted vertex degree within the different instance classes.
Supported by the Wilcoxon sum rank matched pairs test, we conclude that an adjusted
vertex degree worsens the solution quality and therefore should not be used.

Assignment heuristics. We study the factors vertex order {C, D}, requirement order
{R, C}, assignment policy {F, R} and instance class. The ANOVA indicates as significant
all main effects but not the interactions. However, differences among the heuristics arise
in the instance classes and the only choice that remains significantly the best across all
instance classes is the use of a requirement exhaustive assignment policy in the heuristics.

Selection of the best heuristic. The previous analysis indicated the best configura-
tion for G-DSATUR, (smallest saturation first with adjusted vertex degree and T-greedy),
and RLF and it allowed us to discard all the assignment heuristics that do not use a re-
quirement exhaustive assignment policy. No general conclusions were instead possible for
the sequential heuristics. In order to identify an overall best heuristic, we apply F-race,
a racing algorithm described in [5]. Racing algorithms sequentially evaluate candidate
algorithms and discard them as soon as statistically significant evidence arises against
them. We run one race for each instance class {GEOM, GEOMa, GEOMb, TG-120-0.1-5.5, TG-
120-0.5-5.5, TG-120-0.9-5.5}. We use a Friedman test for replicated designs [11] to test
the statistical significance of the differences among the algorithms and we do not discard
candidates in the first three stages of the race; one stage of the race corresponds to the
collection of one run of each heuristic on all the instances of a class. The F-race stops
if only one winner remains or after a maximum of 20 stages. A total of 16 candidate
construction heuristics took part in the race. The results are reported in Figure 2.

We conclude that the overall best algorithm is G-DSATUR. Only on the instance class
TG-120-0.1-5.5 it is not the best heuristic but it clearly dominates on all other classes.
Its computational times on these instances are never above 70 msec. We remark that
the results on the simple construction heuristics also have implications on the choice of
the heuristics for guiding a tree search algorithm, resulting in possibly better complete
algorithms for this or related problems.

6 Stochastic Local Search Algorithms

Local search algorithms iteratively move in the search space of (complete) candidate solu-
tions C, where the possible set of successor solutions is defined by a neighbourhood structure
N : C → 2C . Their extensions through general-purpose stochastic local search methods
[25] are among the top performering algorithms for the GCP and previous experience sug-
gests that this is also the case for the GSTCP. The new algorithms we developed and the
previously known SLS algorithms for the GSTCP essentially follow three different schemes

10

S_DSATUR_greedy_Y
O_DCR
O_CCR
O_CRR
O_DRR

S_RLF_N
S_Seq

S_Seq_SL_N
S_Seq_LF_N

...

0 3 6 9 12

GEOM (7 Instances)

Stage

S_DSATUR_greedy_Y
O_DCR
O_DRR
O_CRR
O_CCR

S_RLF_N
S_Seq

S_Seq_SL_N
S_Seq_SL_Y

...

0 3 6 9 12 15 18

GEOMa (10 Instances)

Stage

S_DSATUR_greedy_Y
O_CCR
O_CRR
O_DCR
O_DRR

S_RLF_N
S_Seq_SL_Y
O_Seq_SL_Y
S_Seq_LF_Y

...

0 3 6

GEOMb (11 Instances)

Stage

O_DRR
O_CRR

O_Seq_SL_Y
S_DSATUR_greedy_Y

S_Seq_SL_Y
O_CCR

O_Seq_LF_Y
O_DCR

S_Seq_LF_Y
...

0 3 6

TG−120.1 (10 Instances)

Stage

S_DSATUR_greedy_Y
O_CRR
O_DRR
O_DCR
O_CCR

S_RLF_N
O_Seq_LF_Y
S_Seq_LF_Y
O_Seq_SL_Y

...

0 3

TG−120.5 (10 Instances)

Stage

S_DSATUR_greedy_Y
O_DRR
O_CRR
O_DCR
O_CCR

S_RLF_N
O_Seq_LF_Y
O_Seq_SL_Y
S_Seq_LF_Y

...

0 3

TG−120.9 (10 Instances)

Stage

Figure 2: The outcome of the F-races for the construction heuristics on the 6 instance classes. A
stage corresponds to the collection of one run of each heuristic on all the instances of a class. On
the y-axis, algorithms are ordered according to average rank, the best being closer to the origin.
The line indicates the life of the heuristic in the race; if only one heuristic survives, the race is
stopped. Only the best 9 algorithms out of 16 are depicted. In the labels the first letter refers to
the split graph S or original graph O approach.

for tackling the problem. These schemes depend on the choices taken for the application
of the underlying local search.

6.1 Schemes for applying SLS algorithms to the GSTCP

For defining how to tackle the GSTCP, there are two main decisions to take: how to
combine the constraint satisfaction and the optimisation part of the problem and which
constraints to enforce in the definition of candidate solutions.

The first aspect is tackled usually in two possible ways in graph colouring problems.
Either one reduces the optimisation problem to a series of constraint satisfaction problems
that allow for a decreasing number of colours k. In this case, each constraint satisfaction
problem is tackled as an optimisation problem where the candidate solutions are infeasible
and the local search tries to minimise the number of constraint violations. (This is a typical
procedure in local search for constraint satisfaction.) Or one defines an objective function
that is the weighted sum of the number of colours and the violated constraints and that
is to be minimised. In the rest of the article we denote the former choice “k fixed” and
the latter “k variable”, to emphasise the presence or not of k in the objective function.

The second decision affects the search space of the local search algorithm in two ways,
by determining its size and by influencing its landscape. If no constraints are enforced in
the solution representation, the search space might be very large but the landscape highly
connected. On the contrary, the enforcement of many constraints in the solution represen-
tation might reduce the search space size but it might also make impossible to move from
a given solution to another or it might introduce basins of attractions from which it could
be hard to escape. Clearly, a good trade-off must be found. In the GSTCP, we decide
to maintain the requirement constraints always satisfied. (However, the alternative choice
would also be worth investigation and corresponds to a solution representation that allows
also partial solutions.) The possibility of the transformation of GSTCP instances into
GTCP instances suggests two alternative choices that we examine: (i) enforcing the ver-

11

tex constraints and minimising the violation of edge constraints only (GSTCP formulation
on the original graph) or (ii) maintaining on the same level edge and vertex constraints
and minimising the violation of both (GTCP formulation on the split graph).

The combination of these choices gives rise to different local search schemes. We have
implemented the following three.

Scheme 1: k fixed, split graph. Candidate solutions are represented as complete
assignments, i.e., one colour for each vertex. The evaluation function counts the number
of vertex and edge constraint violations and the goal is to find an assignment with zero
violations. The basic neighbourhood is the one-exchange neighbourhood, where for a given
candidate solution all those candidate solutions are neighbours that differ in the colour
assignment of exactly one vertex. We further restrict this neighbourhood by allowing only
the vertices that are involved in a constraint violation to change their colour. We call this
restricted neighbourhood NE .

Scheme 2: k fixed, original graph. This scheme works on the original GSTCP
formulation and, hence, candidate solutions are represented as sets of r(v) colours for each
vertex v ∈ V . In this representation, we also enforce that the colours within each set satisfy
the vertex separation constraints, thus, reducing significantly the search space size when
compared to the previous scheme. The evaluation function counts only the number of
violated edge constraints and is to be minimised. The basic one-exchange neighbourhood
is analogous to NE with the further restriction that the new colours must also satisfy the
vertex constraints. We denote this neighbourhood by N ′

E .
In this scheme, we additionally defined a new vertex colour reassignment neighbour-

hood [10]. Given a candidate solution, the set of its neighbours comprises all candidate
solutions where all colours at a single vertex have been reassigned. Since this set would
be of exponential size, we restrict it to comprise only those candidate solutions obtained
by vertex colour reassignments that satisfy the requirement, vertex and edge constraints
acting on the vertex. We denote this neighbourhood by NR. NR requires the exact so-
lution of a sub-problem, which is finding a feasible assignment of r(v) colours among the
k available ones to a vertex v under the condition that none of the other vertices change
their colour assignment. Clearly, such a reassignment of colours may not exist, and, hence,
this may lead to the case that NR is empty.

Scheme 3: k variable, split graph. In this scheme, the candidate solutions are again
complete colour assignments but now the colour assignments can be both proper and
improper. The number of colours k is left variable but it is, for practical reasons, limited
to a value kI that we determine by a construction heuristic. An evaluation function to
guide the search towards proper colourings and towards colourings with small span was
proposed by Hurley et al. [26]. Similarly, for a given candidate solution s, we define

f(s) = kmax + kI ·
∑

uv∈E

IE(uv) + (kmax − kmin) +
kI∑
i=1

IC(i), (4)

where kmax is the largest colour used by s, IE(uv) is an indicator function that returns one
if the corresponding edge or vertex constraint is broken, kmax− kmin is the span in s, and
IC(i) is an indicator function that returns one if colour i is used in s (thus, this last term
computes the order). Note that the edge conflicts are weighted by kI so that a solution

12

that reduces the number of violations will always be preferred to those that modify other
terms of the sum. The inclusion of the order in the sum contributes to break ties. The
term kmax is the least important and contributes only to use the first colours, avoiding to
move with the same span over and over through the interval [1, kI]. Finally, it is again
straightforward to use NE as the neighbourhood.

6.2 Neighbourhood Examination

One-exchange neighbourhood. A crucial aspect of local search algorithms is the
examination of the neighbourhood. The size of NE is k · |V c|, where V c is the set of
vertices that are involved in a conflict. Additional data structures can be used to make
the evaluation of a neighbour fast. This is especially important in efficient implementations
of a best-improvement strategy, where the best neighbouring solution replaces the current
one. To this aim, one can define, for example on the split graph, the matrix ∆ of size
|V S | × k where each element ∆(v, c) indicates the contribution to the evaluation function
of the assignment of the colour c to vertex v ∈ V S . This matrix can be initialised and
updated taking into account the usual speed-up techniques for the GCP; however, due to
the separation distance constraints, the update of ∆ is by a factor t more complex than
in the GCP case, where t is the maximum occurring separation distance. In the local
search for the GSTCP formulation, an additional matrix ∆2 of size |V | × k is maintained
to forbid the assignment of colours that break vertex constraints.

Exact vertex colour reassignment neighbourhood. In our implementation, we
search NR by considering in random order the vertices currently involved in at least
one conflict. For each chosen vertex, a set F is determined that comprises the colours
that are proper, that is, not in conflict with any colour assigned to the adjacent vertices.
The construction of this set can be done in O(|V |k) using the auxiliary data structures
introduced in the previous paragraph. If one simply sought for r(v) colours from F such
that the vertex constraints are satisfied, this would be easy: it suffices to order the values
in F and scan the set once, skipping the values that are not sufficiently distant from the
previous ones. However, this procedure is deterministic and, when visiting a vertex a next
time, the search would use the same colour reassignment if nothing had changed in the
adjacent vertices. To avoid this cycling behaviour, randomisation is introduced in the
reassignment. This requires to find all subsets of F of size r(v) that satisfy the vertex
constraints and pick one at random.6 We solve this problem in a dynamic programming
fashion [10]. Given the ordered sequence of integers in F , a proper colouring is an or-
dered subsequence of integers composed by other subsequences, each allowing a number of
proper solutions, corresponding to the different ways the subsequence can be extended to
a sequence of length r(v) by adding elements from F . The total number of such solutions
can be defined recursively and computed in a bottom-up fashion. Afterwards it is possible
to choose one solution uniformly at random.

More specifically, let s be the ordered vector of integers in F , L = |F |, D = tv and
H = r(v). Then for each position i of the vector s we define next(i) = minj{j | j >
i, s[j]− s[i] ≥ D}. For each subsequence l of s, the number Nh[i] of proper subsequences
of s of length h ∈ {1, . . . ,H} containing l = {s[1], . . . , s[i]}, can be determined by the

6This problem corresponds to generating all subsequences of length L of a set of H integers, H > L,
such that all pair-wise distances between the integers of the subsequence are larger than a constant D.

13

1 2 5 6 7 8 10

next(1)=3 next(3)=7

next(4)=7next(2)=4
0

12345670

000126110

3 1 0 0 0 0 0

2 3 4 5 6 7

1

2

3

10

h

i

Figure 3: An example of vertex exact colour reassignment for a case in which F =
{1, 2, 5, 6, 7, 8, 10}, L = |F | = 7, D = tv = 4 and H = r(v) = 3. On the left the vector s of
7 integers. For each integer in the sequence the pointer next() is computed, where not indicated it
is set to 0. On the right the table of Nh[i] values. Its construction starts from the low right corner.
Arrows indicate the stored values that are used to compute the entries. The grey cells indicate the
values without a proper meaning and hence assigned by convention.

recursion

Nh[i] =

L− i + 1 if h = 1
Nh−1[next(i)] + Nh[i + 1] if L− i− 1 > h ≥ 2
0 otherwise

(5)

if i ≥ 1 and Nh[0] = 0 by convention.
The total number of proper subsequences of length r(v) corresponds to NH [1]. To

select one solution at random among the Nh[i] solutions one has then simply to scan the
sequence s and select each element with probability Nh−1[next(i)]/Nh[i], since this is the
fraction of the extensions, which contain the element in question. Whenever an element
is chosen the scanning moves to next(i). Scanning the sequence of numbers takes linear
time, but computing each time the recursion 5 takes exponential time. However, this
can be done much more efficiently if all values Nh[i] are computed at the beginning and
recorded in a table. Referring to Figure 3, right, if the table is filled from bottom to top
and from right to left within each row, each new entry needs the values of Nh−1[next(i)]
and Nh[i + 1], which are already determined and stored. The next function and the table
together can then be computed in O(max(D,H, log L)L) while to chose a subsequence
randomly a further scan of the sequence s is needed.

6.3 SLS Algorithms

The local search schemes in the previous section perform poorly if applied in a simple
iterative improvement algorithm. They become really effective, once they are used inside
general-purpose SLS methods. We have therefore implemented various SLS algorithms
which include re-implementations of previously proposed algorithms for the GSTCP or
their extension, new adaptations of high-performing SLS algorithms for the GCP to solve
the GSTCP, and newly developed algorithms. In all cases, we solve the GSTCP by starting
from a k and a colouring determined by the G-DSATUR heuristic.7 For algorithms that
solve the problem as a series of constraint satisfaction problems with k fixed, some vertices
have to be recoloured once a proper colouring with k colours is found. This is done by

7It might be objected that the best initial solution is not necessarily the most favourable for the local
search. For the GCP, we did not note any difference in final solution quality by using one or another
construction heuristic but there is instead a reduction in CPU time if the initial k is the best possible.
Moreover, in the scheme that holds k fixed, a new initial solution for local search is determined every time
k is decreased by one. In this case we found that there is no difference in using a random reassignment
of colours to uncoloured vertices or any other choice. For our choice we assumed these same results to be
valid also on the GSTCP.

14

choosing for those vertices that had assigned colour k a colour among the k− 1 remaining
ones uniformly at random. The best solution returned is the smallest value for k at which
a proper set T -colouring is found.

6.3.1 SLS algorithms for Scheme 1: k fixed, split graph

Tabu search. We implemented a standard tabu search procedure that chooses at each
iteration a best non-tabu move or a tabu but “aspired” neighbouring solution from NE .
The tabu list forbids to reverse a move and the tabu tenure is chosen as tt = random(10)+
2δ|V c|, where V c is the set of vertices which are involved in at least one conflict, δ is a
parameter, and random(10) is an integer random number uniformly distributed in [0, 10];
this choice follows a successful tabu search algorithm for the GCP by Galinier and Hao
[18]. We denote this algorithm SF-TS.

SF-TS is very similar to the tabu search algorithms proposed in [12], [8], and [26]. In
those papers, tabu search was reported to perform better than simulated annealing and
genetic algorithms. Our tests with a simulated annealing algorithm of the FASoft system
[26] for the GEOM benchmark set confirmed these results.

Min-conflicts. The min-conflicts heuristic [36] is based on NE but implements a par-
ticular two-stage process for examining the neighbourhood. In a first stage, a vertex is
chosen uniformly at random from the set V c; in a second stage, this vertex is assigned a
colour such that the number of conflicts is minimised, breaking ties randomly. As shown
in [48], the min-conflicts heuristic can be profitably enhanced by tabu search, where the
reversal of a move is forbidden. If all colours of a vertex are tabu, one is chosen randomly.
One advantage of this neighbourhood examination strategy is that it allows for an easier
implementation, since it does not require the usage of auxiliary data structures such as
the ∆ matrix described in the previous section. In addition, the chances of cycling are
reduced due to the random choices in the first stage of the selection process, allowing for
shorter tabu lists. The tabu tenure is set constantly to an integer tt during the whole
search. We denote this algorithm SF-MC.

Guided local search. Guided local search (GLS) is an SLS strategy that modifies the
evaluation function in order to escape from local optima [51]. An application of GLS
to the GCP has shown good performance on geometric graphs [9]. GLS uses a penalty
weight we that is associated to each edge e and that is initialised to one. On the GTCP,
the algorithm derived from this strategy, SF-GLS, uses an augmented evaluation function
g′ defined as

g′(s) = f(s) + λ ·
∑

e∈EC

we · IE(e),

where f(s) is the usual evaluation function, λ a parameter that determines the influence
of the penalties on the augmented cost function, and IE(e) an indicator function that
takes the value 1 if the end points of edge e are in conflict in the candidate solution s
and 0 otherwise. The penalties are initialised to 0 and are updated each time an iterative
improvement algorithm reaches a local optimum of g′. The modification of the penalty
weights is done by first computing a utility ue for each violated edge, ue = IE(e)/(1 + we),
and then incrementing the penalties of all edges with maximal utility by one. The un-
derlying local search is a best-improvement algorithm on NE . When a local optimum

15

is reached, the search continues for a maximum number of sw plateau moves before the
evaluation function g′ is updated.

GLS was already applied in the context of frequency assignment [50]. There, the local
search was more complex than ours since it includes the use of don’t look bits to avoid the
repetition of recent exchanges. However, by restricting the neighbourhood to only vertices
involved in conflicts we practically achieve a similar effect.

Hybrid evolutionary algorithm. A hybrid evolutionary algorithm was shown to be
a top performer for the GCP [18]. This algorithm uses a tabu search procedure as the
underlying local search. We denote the hybrid algorithm on the GTCP as SF-HEA. SF-
HEA starts with a population P of candidate solutions and then iteratively generates
new candidate solutions by re-combining two members of the current population. The
recombination operator, which is deemed responsible for the high performance of this
algorithm on the GCP, is the greedy partition crossover (GPX) [18]. The new candidate
partition returned by GPX is then improved by SF-TS, run for lLS iterations, and is
inserted in the population P replacing the worse parent. Beside the parameter δ of SF-TS,
SF-HEA requires to set a value for lLS .

6.3.2 Scheme 2: k fixed, original graph

Tabu search. An application of tabu search using the one-exchange neighbourhood N ′
E

on the original graph was designed by Dorne and Hao (1998) [16]. Other versions of this
algorithm for frequency assignment [23] differ only in the management of the tabu length
or are more rudimentary [24]. Our version uses the same tabu tenure definition as SF-TS
and is in this equal to the version in [16]. We denote this algorithm OF-TS.

We also include two enhanced versions of OF-TS, which make use of the vertex reas-
signment neighbourhood NR. Since the exploration of the union of N ′

E and NR would be
computationally expensive, we adopt a heuristic rule for choosing the next move to apply.
First the best non tabu move in the neighbourhood N ′

E is determined. If it improves on
the current solution, it is accepted. If it leaves the evaluation function value unchanged
or worsens it, a move is searched in the neighbourhood NR, restricted to vertices involved
in at least one conflict. If a proper reassignment is found, it is applied, otherwise the best
non-tabu move in N ′

E is applied. We call the overall algorithm OF-TS+R.
A variant of OF-TS+R tries the colour reassignment to a random vertex from V in case

no move is found in NR restricted to conflicting vertices. The motivation for this is that
a random reassignment of colours to vertices, where no conflict is present, may produce a
change that can propagate profitably. We denote this variant OF-TS+R∗.

The tabu search mechanism applied to moves in N ′
E is the same used in OF-TS and

[16] (aspiration criterion included). No tabu search mechanism is instead applied to moves
in NR. In this case, repetitions in the search are avoided by the randomisation of the
reassignment. Preliminary experiments clearly indicated that the use of a randomised
reassignment instead of a deterministic one yields better results.

Squeaky wheel optimisation. The iterated greedy (IG) algorithm by Culberson for
the GCP [14] consists in applying the greedy colouring repeatedly each time to a new
permutation of the vertices. Each new permutation keeps vertices with the same colour
in the previous colouring in consecutive positions. A nice theorem shows that by this
definition of a permutation as input to a greedy colouring procedure, results in a solution
that does not use more colours than the previous colouring, but possibly less. For the

16

GSTCP, due to the distance separation constraints, the result of the theorem is not true
anymore. In fact, only permutations in which the distance between colour classes remains
the same will guarantee such a result. One such permutation is the reverse order of the
colour classes.

The IG algorithm has inspired the application of squeaky wheel optimisation (SWO)
[30] to the GSTCP by Lim et al. [31]. The method works in three phases: construction of
a solution, analysis and identification of trouble makers, and prioritisation of the trouble
makers that are thus handled earlier by the constructor in the next iteration. In the
description of the first SWO algorithm for the GSTCP [31], a few details are missing,
making impossible a precise re-implementation of the algorithm. Instead, we implemented
our own version. The algorithm works as follows. An initial solution is determined by a
construction heuristic. Then, a colouring that uses k−1 colours is constructed applying the
T-greedy algorithm to a permutation of the vertices obtained from the previous colouring.
The permutation maintains vertices that have the same colour in consecutive positions but
reverses the order of the colour classes and shuffles vertices in the classes. The rationale
behind this procedure is that, if the reverse order of colour classes yields a colouring that
uses the same or a lower number of colours, then it is possible that this order or small
variations thereof lead to a feasible colouring with k − 1 colours. Perturbations in the
reverse order are introduced by inserting vertices that had colour k before vertices that had
colour b, with b ∈ {k − 1, . . . , 1}. Each colouring generated by T-greedy with a proposed
permutation of the vertices is then improved by OF-TS applied for µ · V c ·

∑
v∈V r(v)

iterations. If no feasible solution is found and all possible values of b have been attempted,
the search proceeds by OF-TS solely. We denote this algorithm as OF-SW. Note that the
algorithm can be used both with OF-TS and with SF-TS. The preference for OF-TS is
the result of preliminary experiments. In addition, we include another variant OF-SW+R,
which uses OF-TS+R instead of OF-TS.

More recently, Lim et al. published an enhanced version of their algorithm [32]. This
version differs from ours in the fact that 5% of colours are placed after b in the new
permutation and b is kept fixed to 8. Moreover their algorithm uses a tabu search on the
split graph based on a swap neighbourhood. Experiments, however, show that our version
produces often results superior to those reported in [32].

6.3.3 Scheme 3: k variable, split graph

Tabu search. We implemented a tabu search algorithm in all equal to SF-TS except
that it uses the evaluation function of Equation 4. We denote this algorithm as SV-TS.

7 Experimental Assessment of SLS Algorithms

In this section, we compare experimentally the 10 SLS algorithms described in Section 6.3.
Additionally, we include the tree search algorithm with incomplete randomised dynamic
backtracking by Prestwich [41, 42]. The implementation of this algorithm, which we denote
FCNS, was kindly made available by the author.

The empirical analysis aims at determining (i) which local search scheme performs the
best; (ii) the impact of the new colour reassignment neighbourhood; and (iii) the overall
best algorithm. Moreover, by separating the analysis between the instance classes we aim
at assessing differences in performances due to instance features.

Differently from construction heuristics, the SLS algorithms studied here do not have
a natural stopping criterion. To make the comparison fair among the algorithms, we

17

NRU, HD-RU GEOM Philadelphia

OF-TS
δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100}

δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100}

δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100

OF-TS+R
δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100}

δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100}

δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100

OF-TS+R∗ δ ={20; 40} δ ={20; 40} δ =20; 40}

SF-TS
δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100}

δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100}

δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100

SV-TS
δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100}

δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100}

δ ={0.5; 1; 10; 20; 30; 40; 50;
60; 70; 100

SF-HEA
µ = {1000, 10000};
δ = {20,40}

µ = {1000, 10000};
δ = {20,40}

µ = {1000, 10000};
δ = {20,40}

SF-GLS
λ = 1;
sw = {1, 20, 100, 200}

λ = 1;
sw = {1, 20, 100, 200}

λ = 1;
sw = {1, 20, 100, 200}

SF-MC tt = {2, 10, 20, 30} tt = {2, 10, 20, 30} tt = {2, 10, 20, 30}
FCNS B=1 B=1 B=1

Table 3: The parameter values tested and selected (in bold) for the SLS algorithms.

need to allocate the same amount of resources. Since we cannot use the number of steps
per algorithms, because they entail different computational effort among the algorithms,
we use for all algorithms a common CPU-time limit. This approach is feasible, since
the algorithms are all implemented in a same framework, share data structures where
reasonable and they were implemented by the same person.8

7.1 Experimental setup

CPU time limit. For defining the CPU-time limit, we use OF-TS as a reference algo-
rithm. This algorithm is run for Imax = 105×

∑
v∈V r(v) iterations and its computational

time is measured.9 The iteration limit is chosen such that on the one side the algorithm
reaches a limiting behaviour and further improvements in solution quality are small, on
the other side the experimental study remains feasible with respect to the overall computa-
tional time consumption. Note that Imax is set proportional to the number of vertices and
to the requirements and, hence, the computational time varies among the instance classes.
Moreover, the computational time within each class is stochastic because of the differ-
ences observed when running OF-TS on a same instance and to the presence of different
instances. By using regression techniques [35], we fitted the computational times among
all types of instances and expressed them as a function of the 5 variables |V |, ρ, r̄, t̄vv, t̄uv.
The details of this analysis are reported in [9]. We use the values predicted by the model
as time limits in each class.10

Parameter tuning. All SLS algorithms in the comparison require some parameters to
be tuned for the classes of problem instances and for the given computational time limit
decided. In Table 3, we summarise the parameters presented in Section 6.3 and for each
of them the values tested and the values selected.
The experimental design. We perform one analysis for each of the instance classes
in Table 1. Within each class, the algorithms constitute the treatment factor and the

8Certainly, this does not remove any possible bias towards one algorithm; however, several factors that
influence computational times like programming languages, computing environment, etc. are excluded from
being the main responsible for the observed differences.

9Only on the HD-RU set we adjusted the iteration limit to Imax = 104 ×
P

v∈V r(v), because of the large
size of these instances and the very high resulting computational times.

10To give an impression of the computational times involved, we mention that the longest computational
time for any uniform random instances with 60 vertices resulted to be about 3 hours and 30 minutes. For
numerical details, see the tables in Appendix B.

18

5 10 15 20 25 30

OF−SW+TS

OF−SW+TS+R

OF−TS

OF−TS+R

OF−TS+R*

SF−TS

SF−MC

FCNS

SF−EA+TS

SV−TS

SF−GLS

GEOM p=0.1 r=10 tu=10 tuv=4.5 (7 Instances)

5 10 15 20 25 30

GEOMa p=0.2 r=10 tu=10 tuv=4.5 (10 Instances)

5 10 15 20 25 30

GEOMb p=0.2 r=3 tu=10 tuv=4.5 (11 Instances)

Figure 4: Simultaneous confidence intervals for SLS algorithms on the GEOM instance set of the
GSTCP. The x-axis gives the average rank.

different instances the blocking factor. We collect 5 algorithmic runs per instance on the
Philadelphia set and 3 runs per instance on the classes derived from the GEOM, NRU and
HD-RU sets. We use the set HD-RU only for the validation of numerical results in Appendix
A, as for other kinds of analyses the set NRU covers the same instance structures and it is
better organised.
Statistical analysis. We use statistical methods to determine whether the data collected
are enough to claim statistical significance of the observed differences. Checks on the
assumptions for a parametric analysis indicated that these are violated and therefore we
resort to non-parametric rank-based tests. Results are ranked within each instance among
the 11 algorithms and across the number of runs collected. (That is, the ranks on each
instance range from 1 to 33, if 3 runs per instance are collected.) We present the results
by means of simultaneous confidence intervals as derived from the Friedman sum rank test
[11]. The visualisation is given in Figures 4 to 6 for the three instance sets. On the y-axis,
the algorithms are ordered according to their overall performance in the instance set, the
best algorithms being closer to the origin. On the x-axis we report the average rank. Two
algorithms are significantly different if the confidence intervals around their average ranks
do not overlap. For a synthesis of the numerical results underlying these graphics, we refer
to Appendix A.

7.2 Results

In general, there is a considerable improvement over the solution provided by G-DSATUR
which indicates the importance of using SLS algorithms (see numerical results in Appendix
A). Moreover the comparison with a randomised backtracking algorithm, FCNS, clearly
indicates the superiority of approaching these large GSTCP instances by means of local
search methods. However, no SLS algorithm is consistently the best in all instance classes
and, hence, instance features influence the relative performances.
Local search scheme. For all instance classes solving the constraint optimisation prob-
lem as a series of constraint satisfaction problems results to be a better approach than
weighting both infeasibility and span in a single objective. This can be appreciated by
comparing the performance of SV-TS and SF-TS over all the classes. Although it is oppor-
tune to maintain a certain caution in commenting these results, because better algorithms

19

OF−TS+R

OF−SW+TS

OF−SW+TS+R

OF−TS

OF−TS+R*

SF−TS

SF−MC

SF−EA+TS

SV−TS

FCNS

SF−GLS

TG−60−0.1−5.5 (10 Instances) TG−60−0.1−5.10 (10 Instances) TG−60−0.1−10.5 (10 Instances)

OF−TS+R

OF−SW+TS

OF−SW+TS+R

OF−TS

OF−TS+R*

SF−TS

SF−MC

SF−EA+TS

SV−TS

FCNS

SF−GLS

TG−60−0.5−5.5 (10 Instances) TG−60−0.5−5.10 (10 Instances) TG−60−0.5−10.5 (10 Instances)

10 20 30

OF−TS+R

OF−SW+TS

OF−SW+TS+R

OF−TS

OF−TS+R*

SF−TS

SF−MC

SF−EA+TS

SV−TS

FCNS

SF−GLS

TG−60−0.9−5.5 (10 Instances)

10 20 30

TG−60−0.9−5.10 (10 Instances)

10 20 30

TG−60−0.9−10.5 (10 Instances)

Figure 5: Simultaneous confidence intervals for SLS algorithms on the NRU instance set of the
GSTCP. Each algorithm was run 3 times per instance with a time limit corresponding to Imax

iterations of OF-TS. The three rows comprise the instances for values of p equal to 0.1, 0.5, and
0.9, respectively; the columns report different parameters for the requirements and separation
distances. The x-axis represents the average rank.

than the simple SV-TS could be devised, we found that the approach that leaves k variable
is more complex to implement and to tune than the one leaving k fixed.

The other clear result is the profitability of enforcing the vertex constraints to be always
satisfied. In particular, we draw this conclusion by comparing OF-TS with SF-TS. This
result may be somehow surprising and contrasts with the findings of [43] who show that
symmetry breaking constraints have a negative effect on local search performance for SAT
problems. The reasons for the improved performance by enforcing the vertex constraints
are not absolutely clear. If they are not enforced, it may simply be that the resulting search
space remains too large; while, if the constraints are enforced, the search landscape might
exhibit barriers of increased height between local optima which should hinder the search.
In this latter case, the search space remains however connected and tabu search might
be sufficient to overcome the barriers. Moreover, the possibility of making larger steps in
the vertex colour reassignment neighbourhood than in the one-exchange neighbourhood
might also have helped to overcome some detrimental effects due to enforcing the vertex
requirement constraints. A more detailed analysis to unveil the possible reasons for this
behaviour is, however, beyond the scope of this article.

20

10 20 30 40 50

OF−TS+R*

OF−TS+R

OF−TS

OF−SW+TS

FCNS

OF−SW+TS+R

SF−EA+TS

SF−MC

SF−TS

SV−TS

SF−GLS

Philadelphia (9 Instances)

Figure 6: Simultaneous confidence intervals for SLS algorithms on the Philadelphia instance set
of the GSTCP. Each algorithm was run 5 times per instance with a time limit corresponding to
Imax iterations of OF-TS. The x-axis represents the average rank.

Vertex colour reassignment neighbourhood. The comparisons of OF-TS vs. OF-
TS+R and OF-SW vs. OF-SW+R show that the usefulness of the colour reassignment
neighbourhood NR depends on the features of the instances. On the GEOM set, the usage
of NR does not yield any improvement but its usage at least does not worsen performance
significantly. On the NRU set, however, the usage of NR results in a statistically significant
better performance on various instance classes. From a closer inspection of the results,
we might argue that this neighbourhood becomes profitable with an increase of the edge
density in the graph and an increase of the vertex requirements. Finally, on the Philadel-
phia set, OF-TS+R∗, a variant of OF-TS+R, is the best performing algorithm. We also
checked in more detail the contribution of the reassignment neighbourhood and found
that it does, in fact, contribute to find a significant number of improvements, where a
simple one-exchange does not. As an example, on instance type T-G.5.5-60.0.5 on 10,000
iterations of OF-TS+R we observed 776 improvements due to one exchanges and 194 due
to vertex colour reassignments [9].
Best SLS algorithms. Tabu search is, as also for the GCP [9], a very competitive
algorithm despite its simplicity. The use of squeaky wheel optimisation to improve its
performance is not always effective. On the NRU set, the best results are typically found
by OF-TS+R, i.e., the tabu search with the colour reassignment neighbourhood. Squeaky
wheel optimisation improves performance, however, on the low density NRU graphs and on
the GEOM graphs. On the Philadelphia set, tabu search works again best as a stand-alone
algorithm. Since the Philadelphia graphs are quite similar to the geometric ones, the
reason for the observed difference in the contribution of squeaky wheel optimisation might
be due to the higher vertex requirements of the Philadelphia instances.

Other methods, which are state-of-the-art for solving specific instance types of the
GCP, perform surprisingly poorly on the GSTCP. These algorithms, SF-MC, SF-GLS and
SF-HEA, perform poorer than SF-TS. Further analysis on SF-MC revealed, however, that
its performance varies in relation to parameter tuning and some limited results indicate
that it can become competitive for very large graphs [9]. Moreover, contemporaneously
to our work, Malaguti and Toth [33] were developing an evolutionary algorithm with a
recombination operator, tailored for this specific problem, that does seem to bring some
advantages.
Comparison with the results in the literature. As a final step, it is worth comparing

21

the results of the algorithms on standard benchmarks. The detailed results of the algo-
rithms on the instances of the sets GEOM and HD-RU and Philadelphia are given in Appendix
A together with the best known values reported in the literature ([39, 40, 42, 31, 32] and
the FAP website). We can make the following observations.

On the GEOM instance set, our version of squeaky wheel attains better results than the
version in [32]. The results in the column best results are indeed almost all derived by that
paper. Our best results found by OF-SW are better on 16 instances (with improvements
of even 19 and 22 colours) and equal on 7, while they are worse only on 5 instances.
Moreover, the results in [32] are the best out of 10 runs while in our case they are the best
over only 3 runs per instance. Computational times seem to be longer in our case but a
fair comparison is not possible because in [32] we find only the times to reach the best
solution, while the whole run time should be compared.

On the HD-RU set we observe that our G-DSATUR performs better than the DSATUR
presented in [16], thus indicating the importance of the novelties introduced into the algo-
rithm. The results of OF-TS are, instead, inferior to those reported for the implementation
of the same algorithm in [16] and they remain inferior even for our best algorithm in that
class, OF-SW+R. This difference may be due to the different number of iterations allowed
to the two tabu search algorithms. In fact, Dorne and Hao allow 107 or even 2 · 107 it-
erations for each constraint satisfaction problem in the series (that is, for each value of k
examined) while in our experimental setup, we limit the number of iterations to be often
lower than 107 across the whole series (that is, across all values of k). By comparing the
computational times reported in [16] and adjusting the machine speed, we note that they
used approximately 20 times more computation than we did in our experiments.

On the Philadelphia instance set, our G-DSATUR is in general better than the DSATUR
implemented in the FASoft system [26]. If compared with the best solution returned by
a portfolio of 64 sequential heuristics (DSATUR included) of FASoft, our G-DSATUR is
able to improve their solution on 6 out of 9 instances. Hence, G-DSATUR would also be an
excellent candidate for extending the algorithm portfolio of FASoft. Our best algorithm
for this set of instances, OF-TS+R∗, produces 7 times out of 9 the optimal solution. In the
literature, only the algorithm by Matsui and Tokoro (2001) reached similar performance
with 8 out of 9 optimal solutions found [34].

8 Conclusions

We presented an extensive study of stochastic local search algorithms for the GSTCP, a
problem that finds practical application in frequency assignment. The study included con-
struction heuristics and more advanced SLS algorithms and was organised with a rigorous
separation of concepts so that the contribution of different modelling and search choices
can be examined unambiguously. The assessment was conducted experimentally on three
benchmark sets. A fourth benchmark set was created with the goal of better discrimi-
nating the influence of instance features on algorithm performance. The competitiveness
of the results discussed have been shown on the random geometric instances proposed by
M. Trick, the random uniform instances by [16] and on the Philadelphia instances from
the frequency assignment literature.

The component-wise study on the construction heuristics allowed us to improve a
generalised version of DSATUR and to show its superiority with respect to sequential, as-
signment and partitioning heuristics. The novelties of our G-DSATUR are the smallest first
order of the vertices and the use of an adjusted vertex degree to break ties. Comparisons
of the numerical results of our G-DSATUR algorithm on a number of benchmark instances

22

to the best construction heuristics in the literature confirm its very high performance. It
should be also noted that the new heuristic functions used in G-DSATUR may lead to
improvements in complete tree-search algorithms for the same problem.

Our study also has given a number of results that may be relevant for the design of
SLS algorithms for other problems than the GSTCP. First, our analysis has confirmed
that solving constraint optimisation problems as series of constraint satisfaction problems
is more convenient than minimising a weighted sum of constraint violations and prefer-
ence criteria (in this case the T-span). Second, we found that enforcing some constraints
by the solution representation, in the GSTCP case the vertex constraints, has a positive
effect on the local search. Finally, we proposed a novel exact examination of an enlarged
neighbourhood, which uses randomisation to provide different solutions to the small sub-
problems being solved. The use of exact search in a complex neighbourhood can be seen as
a successful example of hybridisation in local search, while the randomisation is inherent
of stochastic local search as a basic way to avoid repeating actions and to diversify the
search. Although these results are certainly problem domain dependent and their validity
on other problems must be tested experimentally, they nevertheless may help to direct the
design of local search for constraint optimisation problems.

Finally, we could identify the SLS algorithms that are the overall best. Besides tabu
search, which showed to be a very useful metaheuristic in this specific problem domain,
our re-implementation of a squeaky wheel optimisation algorithm performed the best
on the Geometric instance set and we were able to produce 16 new best results on the
benchmark instances. On the random uniform graphs, the best performing algorithm
is instead our new tabu search with the randomised exact neighbourhood search. Its
positive performance is confirmed and reinforced on the Philadelphia instances taken from
the frequency assignment literature.

Acknowledgements. We acknowledge the support of the Frankfurt Center for Scientific
Computing, who made available its cluster for running the experiments. Thomas Stützle
acknowledges support of the Belgian FNRS, of which he is a research associate.

Appendix A Numerical Results

In Tables 4 to 7 we report the numerical results of our experiments. In all tables, results
are expressed in terms of the number of colours, k. Hence, the T-span may be derived
by subtracting one. The time limit (Max time) at disposal for producing a solution in a
single run is expressed in seconds. The lower bounds (Lwb) are determined through the
TSP procedure described in [1] (we adjusted this value on the Philadelphia instances, as
the Hamiltonian path derived from solving a related TSP is not always the shortest).

The results in Table 4 correspond to the set NRU. They are obtained across three runs
per algorithm on the ten instances composing the class. For each class we aggregated
the results and report the range. These results are used to obtain the visual analysis
in Figure 5. The results in Table 5 correspond to the set HD-RU. DH-DSATUR and DH-
TS are the DSATUR and tabu search algorithm proposed in [16]. In this case, we also
report the number of maximal iterations that DH-TS was allowed to run for solving the
resulting decision problem at each value of k [16]. These values are to be compared with
the maximum total number of iterations used by our OF-TS algorithm. Our algorithms
were run three times on each instance and we report best and average result as in [16]. The
results in Table 6 correspond to the set GEOM. They are obtained by 3 runs per algorithm–
instance combination and were visualised in Figure 4. We report the best and the median

23

result. Finally, the results in Table 7 correspond to the Philadelphia instances. We report
the best and median results derived from 5 runs per algorithm–instance combination.
These data constitute the numerical expression of the visual analysis of Figure 6.

24

In
st

a
n
ce

L
w

b
G

-D
S
A
T

U
R

M
a
x

O
F
-T

S
+

R
O

F
-S

W
O

F
-S

W
+

R
O

F
-T

S
O

F
-T

S
+

R
∗

m
in

m
a
x

m
in

m
a
x

ti
m

e
m

in
m

a
x

m
in

m
a
x

m
in

m
a
x

m
in

m
a
x

m
in

m
a
x

T
G
-6
0
-0

.1
-5

.5
3
0

4
1

4
1

6
2

1
0

3
6

4
6

3
6

4
6

3
6

4
6

3
6

4
6

3
6

4
6

T
G
-6
0
-0

.1
-5

.1
0

4
3

6
9

7
8

1
0
7

2
0

6
3

1
0
1

6
3

8
3

6
3

8
3

6
4

1
0
1

6
3

8
4

T
G
-6
0
-0

.1
-1
0
.5

5
6

9
2

7
9

1
1
6

7
1
0

7
0

9
7

7
0

9
3

6
9

9
2

6
9

9
8

7
1

9
2

T
G
-6
0
-0

.5
-5

.5
3
1

5
1

8
9

1
1
6

3
2
0

7
4

8
8

7
5

9
0

7
6

9
0

7
5

8
9

7
5

9
1

T
G
-6
0
-0

.5
-5

.1
0

6
2

1
0
6

1
6
8

2
3
1

3
4
4
0

1
3
5

1
6
8

1
3
8

1
7
3

1
3
8

1
7
2

1
3
9

1
7
0

1
4
0

1
7
7

T
G
-6
0
-0

.5
-1
0
.5

6
7

1
0
1

1
4
8

2
2
2

6
8
2
0

1
2
1

1
7
0

1
2
3

1
6
2

1
2
3

1
6
3

1
2
2

1
6
4

1
2
3

1
6
5

T
G
-6
0
-0

.9
-5

.5
7
2

9
7

1
6
0

1
9
4

1
2
5
0

1
3
7

1
6
4

1
3
8

1
6
9

1
3
9

1
6
7

1
3
8

1
6
5

1
3
7

1
7
2

T
G
-6
0
-0

.9
-5

.1
0

9
2

1
2
6

3
0
4

3
7
0

6
8
2
0

2
5
9

2
9
0

2
6
0

2
9
7

2
6
3

2
9
6

2
6
2

2
9
5

2
6
4

3
0
0

T
G
-6
0
-0

.9
-1
0
.5

1
4
2

1
7
4

2
8
8

3
5
3

1
2
8
8
0

2
5
2

2
9
9

2
5
1

3
0
2

2
5
4

3
0
4

2
5
2

3
0
1

2
4
9

3
0
5

T
ab

le
4:

N
um

er
ic

al
re

su
lt

s
on

th
e
N
R
U

in
st

an
ce

se
t.

In
st

a
n
ce

D
H
−

D
S
A
T

U
R

G
-D

S
A
T

U
R

D
H

-T
S

It
er

.
M

a
x

O
F
-S

W
+

R
O

F
-T

S
+

R
O

F
-S

W
O

F
-T

S
It

er
.

m
in

a
v
r

m
in

a
v
r

m
in

a
v
r

(×
1
0
7
)

ti
m

e
m

in
a
v
r

m
in

a
v
r

m
in

a
v
r

m
in

a
v
r

(×
1
0
7
)

e
s
s
a
i
.1
0
0
.2
7
5
.1
0

6
3

6
3

6
1

6
1

4
6

4
6
.5

1
1
0

4
7

4
7
.3

4
7

5
2
.3

4
7

4
7

4
6

4
7

0
.2

8
e
s
s
a
i
.3
0
0
.9
3
7
.1
0

1
1
3

1
1
5
.6

1
1
1

1
1
4
.3

8
1

8
1
.5

2
1
9

8
2

8
2
.3

8
2

8
2
.7

8
2

8
2
.7

8
4

8
7
.7

0
.9

4
e
s
s
a
i
.5
0
0
.1
5
0
7
.1
0

1
5
8

1
6
7

1
4
3

1
4
3
.7

1
1
3

1
1
4

2
5
5

1
1
1

1
1
1
.3

1
1
1

1
1
1
.3

1
1
2

1
1
2
.3

1
1
1

1
1
1
.7

1
.5

1
e
s
s
a
i
.1
0
0
0
.3
0
4
9
.1
0

2
8
2

2
8
6
.7

2
2
4

2
2
8

1
7
9

1
7
9

3
(?

)
2
9
4

1
8
2

1
8
2
.7

1
8
3

1
8
3
.3

1
8
3

1
8
3

1
8
4

1
8
4

3
.0

5
e
s
s
a
i
.3
0
.9
5
.5
0

7
5

7
7
.1

6
8

6
8

6
2

6
2
.5

1
1
0

6
2

6
2
.3

6
2

6
2
.3

6
2

6
2
.3

6
3

6
3

0
.1

0
e
s
s
a
i
.1
0
0
.3
0
4
.5
0

1
7
1

1
7
7
.2

1
3
9

1
4
3
.3

1
1
5

1
1
5
.5

1
1
0

1
1
6

1
1
8
.7

1
1
8

1
1
9
.3

1
1
8

1
1
9
.7

1
1
8

1
1
9

0
.3

0
e
s
s
a
i
.3
0
0
.9
0
5
.5
0

4
3
2

4
4
4
.9

3
3
0

3
3
1

2
6
8

2
6
9
.5

2
7
8

2
8
4

2
8
5
.7

2
8
4

2
8
6

2
8
4

2
8
7

2
8
4

2
8
7
.7

0
.9

1
e
s
s
a
i
.5
0
0
.1
4
8
4
.5
0

6
7
8

6
7
8

4
7
9

4
7
9
.7

4
0
3

4
0
3

2
2
5
3

4
1
8

4
2
2

4
2
0

4
2
2

4
2
3

4
2
5
.7

4
2
5

4
2
6
.3

1
.4

8
e
s
s
a
i
.1
0
0
0
.3
0
2
4
.5
0

1
2
2
1

1
2
2
7
.3

8
6
9

8
7
4
.3

8
4
7

8
4
7

3
(?

)
1
4
5
9

7
9
6

7
9
9
.3

7
9
2

7
9
5
.3

8
0
8

8
0
9

8
0
3

8
1
1

3
.0

2
e
s
s
a
i
.3
0
.9
0
.9
0

1
4
6

1
5
4
.7

1
1
9

1
2
0

1
0
3

1
0
3
.3

3
1

1
0

1
0
4

1
0
4
.3

1
0
4

1
0
4

1
0
4

1
0
4
.7

1
0
5

1
0
5
.3

0
.0

9
e
s
s
a
i
.1
0
0
.2
9
9
.9
0

3
2
1

3
4
1
.3

2
5
9

2
6
0

2
2
5

2
2
5
.3

3
1

1
0

2
3
4

2
3
5
.3

2
3
4

2
3
4
.7

2
3
5

2
3
7

2
3
6

2
3
6
.7

0
.3

0
e
s
s
a
i
.3
0
0
.9
4
0
.9
0

9
0
3

9
2
2
.2

6
6
1

6
7
1
.3

5
7
3

5
7
4
.3

3
2

1
6
8

6
0
1

6
0
6
.7

6
0
7

6
0
8
.7

6
1
0

6
1
1
.3

6
0
8

6
1
0

0
.9

4
e
s
s
a
i
.5
0
0
.1
5
3
6
.9
0

1
4
1
0

1
4
3
3
.3

1
0
2
0

1
0
2
6

9
3
2

9
3
2

2
5
2
3

9
4
0

9
5
0
.3

9
5
0

9
5
5

9
5
5

9
5
8

9
5
0

9
5
7
.7

1
.5

4
e
s
s
a
i
.1
0
0
0
.2
9
7
5
.9
0

2
5
2
3

2
5
4
2

1
8
0
4

1
8
1
9

1
7
2
4

1
7
2
4

3
(?

)
2
3
9
5

1
7
4
7

1
7
5
3
.3

1
7
4
8

1
7
5
3
.3

1
7
5
4

1
7
5
6
.3

1
7
6
0

1
7
6
2

2
.9

7

T
ab

le
5:

R
es

ul
ts

on
th

e
H
D
-R
U

in
st

an
ce

se
t.

25

In
st

a
n
ce

L
w

b
B

es
t

G
-D

S
A
T

U
R

M
a
x

O
F
-S

W
O

F
-S

W
+

R
O

F
-T

S
O

F
-T

S
+

R
O

F
-T

S
+

R
∗

k
n
o
w

n
m

in
m

ed
ti
m

e
m

in
m

ed
m

in
m

ed
m

in
m

ed
m

in
m

ed
m

in
m

ed
G
E
O
M
6
0

2
3
0

2
5
8

2
5
8

2
5
8

7
1
0

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

G
E
O
M
7
0

2
6
0

2
7
3

2
8
3

2
8
7
.5

1
0
6
0

2
6
7

2
6
7

2
6
8

2
6
9

2
6
9

2
7
0

2
7
0

2
7
1

2
7
1

2
7
2

G
E
O
M
8
0

3
6
5

3
8
3

3
9
2

3
9
5

1
4
9
0

3
8
2

3
8
2

3
8
2

3
8
2

3
8
4

3
8
5

3
8
6

3
8
6

3
8
8

3
9
0

G
E
O
M
9
0

3
1
3

3
3
2

3
3
5

3
3
8
.5

1
8
1
0

3
3
4

3
3
4

3
3
3

3
3
3

3
3
2

3
3
3

3
3
2

3
3
2

3
3
5

3
3
7

G
E
O
M
1
0
0

3
7
8

4
0
4

4
1
2

4
1
6

2
1
7
0

4
0
4

4
0
5

4
0
4

4
0
4

4
1
1

4
1
4

4
1
2

4
1
4

4
1
1

4
1
1

G
E
O
M
1
1
0

3
4
8

3
8
3

4
0
0

4
1
0

2
5
1
0

3
7
8

3
7
8

3
7
6

3
7
7

3
8
3

3
8
3

3
8
1

3
8
2

3
8
7

3
8
9

G
E
O
M
1
2
0

3
4
3

4
0
2

4
1
2

4
1
9

2
7
3
0

3
9
7

4
0
0

3
9
7

4
0
0

4
0
2

4
0
4

4
0
4

4
0
5

4
0
4

4
0
5

G
E
O
M
3
0
a

1
8
2

2
0
9

2
3
8

2
3
8

3
8
0

2
0
9

2
1
1

2
1
0

2
1
1

2
1
2

2
1
3

2
1
2

2
1
2

2
1
2

2
1
2

G
E
O
M
4
0
a

1
6
0

2
1
3

2
2
9

2
2
9

5
0
0

2
1
4

2
1
5

2
1
4

2
1
5

2
1
4

2
1
5

2
1
5

2
1
6

2
1
7

2
1
7

G
E
O
M
5
0
a

1
9
9

3
1
8

3
3
5

3
4
5

1
0
8
0

3
1
5

3
1
6

3
1
6

3
1
7

3
1
8

3
1
8

3
1
9

3
2
1

3
2
1

3
2
2

G
E
O
M
6
0
a

2
9
0

3
5
8

3
6
9

3
7
3

1
4
2
0

3
5
6

3
5
6

3
6
0

3
6
0

3
6
1

3
6
1

3
6
1

3
6
2

3
6
2

3
6
4

G
E
O
M
7
0
a

4
2
5

4
6
9

4
8
7

4
8
7

1
4
7
0

4
7
8

4
7
8

4
7
8

4
7
8

4
8
4

4
8
4

4
8
4

4
8
4

4
8
1

4
8
4

G
E
O
M
8
0
a

2
4
1

3
7
9

3
8
8

3
9
6

1
5
1
0

3
6
0

3
6
4

3
6
1

3
6
2

3
7
1

3
7
2

3
7
1

3
7
1

3
6
8

3
6
9

G
E
O
M
9
0
a

2
8
5

3
7
7

3
9
8

4
0
5

1
9
1
0

3
7
7

3
7
8

3
7
7

3
7
9

3
9
8

4
0
1

3
9
8

4
0
1

3
8
9

3
8
9

G
E
O
M
1
0
0
a

3
0
2

4
5
9

4
6
2

4
7
1

2
5
0
0

4
3
7

4
4
0

4
4
0

4
4
2

4
4
4

4
4
8

4
4
5

4
4
6

4
4
3

4
4
7

G
E
O
M
1
1
0
a

3
8
5

4
9
4

5
2
3

5
2
3

3
1
2
0

4
9
0

4
9
2

4
9
1

4
9
5

5
0
6

5
0
6

5
0
4

5
0
5

4
9
8

5
0
0

G
E
O
M
1
2
0
a

5
1
4

5
5
6

5
7
1

5
7
8

3
6
9
0

5
4
9

5
5
0

5
5
2

5
5
3

5
5
0

5
5
6

5
5
3

5
5
6

5
5
8

5
6
0

G
E
O
M
2
0
b

3
9

4
4

4
5

4
5

3
0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

G
E
O
M
3
0
b

3
8

7
7

7
8

7
8

8
0

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

G
E
O
M
4
0
b

7
4

7
4

7
9

8
6

1
4
0

7
4

7
4

7
4

7
4

7
4

7
4

7
4

7
4

7
4

7
4

G
E
O
M
5
0
b

6
7

8
7

9
2

9
4

2
0
0

8
4

8
4

8
4

8
4

8
4

8
5

8
5

8
5

8
4

8
5

G
E
O
M
6
0
b

7
9

1
1
6

1
2
3

1
3
2

3
0
0

1
1
7

1
1
9

1
1
5

1
1
8

1
2
0

1
2
0

1
1
8

1
1
9

1
1
9

1
1
9

G
E
O
M
7
0
b

9
4

1
2
1

1
3
3

1
3
5

3
8
0

1
2
0

1
2
1

1
1
9

1
1
9

1
2
1

1
2
1

1
2
0

1
2
2

1
2
2

1
2
2

G
E
O
M
8
0
b

1
1
0

1
4
1

1
4
8

1
4
9

4
9
0

1
3
9

1
3
9

1
3
9

1
3
9

1
4
0

1
4
0

1
3
9

1
4
0

1
4
1

1
4
2

G
E
O
M
9
0
b

1
1
2

1
5
7

1
6
0

1
6
1

5
9
0

1
4
7

1
4
7

1
4
7

1
4
7

1
5
0

1
5
0

1
4
9

1
4
9

1
4
9

1
5
0

G
E
O
M
1
0
0
b

1
3
3

1
7
0

1
7
3

1
7
9

6
9
0

1
5
9

1
6
0

1
6
1

1
6
1

1
6
2

1
6
3

1
6
4

1
6
4

1
6
2

1
6
5

G
E
O
M
1
1
0
b

1
8
2

2
0
6

2
2
1

2
2
5
.5

7
9
0

2
0
8

2
0
9

2
1
0

2
1
0

2
0
8

2
0
9

2
0
6

2
0
9

2
1
3

2
1
3

G
E
O
M
1
2
0
b

1
7
2

1
9
9

2
0
6

2
1
9
.5

9
1
0

1
9
1

1
9
6

1
9
3

1
9
7

1
9
5

1
9
8

1
9
7

1
9
8

2
0
1

2
0
1

T
ab

le
6:

R
es

ul
ts

on
th

e
th

e
G
E
O
M

in
st

an
ce

se
t.

In
st

a
n
ce

L
w

b
O

P
T

K
n
o
w

n
G

-D
S
A
T

U
R

M
a
x

O
F
-T

S
+

R
∗

O
F
-T

S
+

R
O

F
-T

S
O

F
-S

W
F
C
N

S
h
eu

r.
m

in
m

ed
ti
m

e
m

in
m

ed
m

in
m

ed
m

in
m

ed
m

in
m

ed
m

in
m

ed
P
1

3
7
1

4
2
7

4
4
8

4
8
0

4
8
5

4
9
0

4
2
7

4
2
7

4
2
7

4
2
7

4
2
7

4
2
7

4
2
7

4
2
8

4
2
7

4
2
7

P
2

4
2
8

4
2
7

4
7
6

4
5
8

4
6
4

7
1
2

4
2
7

4
2
7

4
2
7

4
4
8

4
2
8

4
5
9

4
2
7

4
2
7

4
2
7

4
2
7

P
3

2
5
8

2
5
8

2
8
5

2
6
8

2
6
8

3
3
3

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

2
6
2

2
5
9

2
6
0

P
4

2
5
4

2
5
3

2
6
9

2
6
0

2
6
6

2
2
5

2
5
3

2
5
4

2
5
3

2
5
3

2
5
3

2
5
3

2
5
4

2
5
7

2
5
5

2
5
5

P
5

2
4
0

2
4
0

2
5
1

2
5
0

2
5
5

3
2
7

2
4
0

2
4
0

2
4
0

2
4
0

2
4
0

2
4
0

2
4
0

2
4
0

2
4
1

2
4
1

P
6

1
7
9

1
8
0

2
3
1

1
9
5

1
9
9

2
7
9

1
8
3

1
8
4

1
8
5

1
8
5

1
8
5

1
8
6

1
8
2

1
8
3

1
9
3

1
9
4

P
7

7
4
3

8
5
6

8
9
5

9
6
9

9
7
3

2
4
3
9

8
5
6

8
5
6

8
7
1

8
7
7

8
6
0

8
7
1

8
7
4

8
7
7

8
5
7

8
5
9

P
8

4
6
1

5
2
5

5
9
3

5
3
9

5
3
9

6
1
0

5
2
5

5
2
5

5
2
5

5
2
5

5
2
7

5
2
8

5
2
5

5
2
7

5
3
4

5
3
4

P
9

1
4
8
7

1
7
1
4

1
8
0
1

1
9
3
8

1
9
4
6

1
0
3
8
1

1
7
1
5

1
7
1
9

1
7
5
6

1
7
5
8

1
7
5
5

1
7
5
9

1
7
7
0

1
7
7
5

1
7
4
7

1
7
5
1

T
ab

le
7:

N
um

er
ic

al
re

su
lt

s
on

th
e

P
hi

la
de

lp
hi

a
in

st
an

ce
se

t.

26

References

[1] K. I. Aardal, C. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and
A. Sassano. Models and solution techniques for the frequency assignment prob-
lem. 4OR: A Quarterly Journal of Operations Research, 1(4):261–317, 2003.
An updated version to appear in Annals of Operations Research is available at
<http://fap.zib.de/download/fap2007.ps.gz>.

[2] S. M. Allen, D. H. Smith, and S. Hurley. Lower bounding techniques for frequency
assignment. Discrete Mathematics, 197-198:41–52, 1999.

[3] L. G. Anderson. A simulation study of some dynamic channel assignment algorithms
in a high capacity mobile telecommunications system. IEEE Transactions on Com-
munications, 21:1294–1301, 1973.

[4] T. Bartz-Beielstein and S. Markon. Tuning search algorithms for real-world applica-
tions: A regression tree based approach. In Congress on Evolutionary Computation
(CEC’04), pages 1111–1118, Piscataway NJ, 2004. IEEE Press.

[5] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for
configuring metaheuristics. In W. B. Langdon et al., editors, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2002), pages 11–18, San
Francisco, CA, USA, 2002. Morgan Kaufmann Publishers.

[6] R. Borndörfer, A. Eisenblätter, M. Grötschel, and A. Martin. Frequency assignment
in cellular phone networks. Annals of Operations Research, 76:73–93, 1998.

[7] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth International Group, Belmont, CA, USA, 1984.

[8] D.J. Castelino, S. Hurley, and N.M. Stephens. A tabu search algorithm for frequency
assignment. Annals of Operations Research, 63(2):301–320, 1996.

[9] M. Chiarandini. Stochastic Local Search Methods for Highly Constrained Combinato-
rial Optimisation Problems. PhD thesis, Computer Science Department, Darmstadt
University of Technology, Darmstadt, Germany, 2005.

[10] M. Chiarandini, T. Stützle, and K.S. Larsen. Colour reassignment in tabu search for
the graph set T-colouring problem. In F. Almeida, J. Marcos Moreno, and M. Pérez,
editors, Third International Workshop on Hybrid Metaheuristics, volume 4030 of Lec-
ture Notes in Computer Science, pages 162–177. Springer Verlag, Berlin, Germany,
2006.

[11] W.J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York,
NY, USA, third edition, 1999.

[12] D. Costa. On the use of some known methods for T-colorings of graphs. Annals of
Operations Research, 41(4):343–358, 1993.

[13] M. B. Cozzens and F. S. Roberts. T -colorings of graphs and the channel assignment
problem. Congressus Numerantium, 35:191–208, 1982.

[14] J.C. Culberson. Iterated greedy graph coloring and the difficulty landscape. Tech-
nical Report 92-07, Department of Computing Science, The University of Alberta,
Edmonton, Canada, June 1992.

27

[15] S. de Givry, G. Verfaillie, and T. Schiex. Bounding the optimum of constraint opti-
mization problems. In Principles and Practice of Constraint Programming - CP97,
volume 1330 of Lecture Notes in Computer Science, pages 405–419. Springer Verlag,
Berlin, Germany, 1997.

[16] R. Dorne and J. K. Hao. Tabu search for graph coloring, T-colorings and set T-
colorings. In Meta-heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pages 77–92. Kluwer Academic Publishers, 1998.

[17] A. Eisenblätter, M. Grötschel, and A. M. C. A. Koster. Frequency assignment and
ramifications of coloring. Discussiones Mathematicae Graph Theory, 22:51–88, 2002.

[18] P. Galinier and J. Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3(4):379–397, 1999.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA, USA, 1979.

[20] K. Giaro, R. Janczewski, and M. Malafiejski. The complexity of the T -coloring prob-
lem for graphs with small degree. Discrete Applied Mathematics, 129(2-3):361–369,
2003.

[21] K. Giaro, R. Janczewski, and M. Malafiejski. A polynomial algorithm for finding
T -span of generalized cacti. Discrete Applied Mathematics, 129(2-3):371–382, August
2003.

[22] W. K. Hale. Frequency assignment: Theory and applications. Proceedings of the
IEEE, 68(12):1497–1514, 1980.

[23] J.-K. Hao, R. Dorne, and P. Galinier. Tabu search for frequency assignment in mobile
radio networks. Journal of Heuristics, 4(1):47–62, 1998.

[24] J.-K. Hao and L. Perrier. Tabu search for the frequency assignment problem in
cellular radio networks. Technical Report LGI2P, EMA-EERIE, Parc Scientifique
Georges Besse, Nimes, France, 1999.

[25] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA, USA, 2004.

[26] S. Hurley, D. H. Smith, and S. U. Thiel. FASoft: A system for discrete channel
frequency assignment. Radio Science, 32(5):1921–1939, 1997.

[27] J. Janssen and L. Narayanan. Approximation algorithms for the channel assignment
problem. Theoretical Computer Science, 262:649–667, 2001.

[28] J. Janssen, T. Wentzell, and S. Fitzpatrick. Lower bounds from tile covers for the
channel assignment problem. SIAM Journal of Discrete Mathematics, 18(4):679–696,
2005.

[29] D. S. Johnson, A. Mehrotra, and M. Trick, editors. Proceedings of the Computational
Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA, 2002.

[30] D. E. Joslin and D. P. Clements. Squeaky wheel optimization. Journal of Artificial
Intelligence Research, 10:353–373, 1999.

28

[31] A. Lim, X. Zhang, and Y. Zhu. A hybrid method for the graph coloring and re-
lated problems. In Proceedings of MIC’2003 – The Fifth Metaheuristics International
Conference, Kyoto-Japan, 2003.

[32] A. Lim, Y. Zhu, Q. Lou, and B. Rodrigues. Heuristic methods for graph coloring prob-
lems. In SAC ’05: Proceedings of the 2005 ACM Symposium on Applied Computing,
pages 933–939, New York, NY, USA, 2005. ACM Press.

[33] E. Malaguti and P. Toth. An evolutionary approach for bandwidth mul-
ticoloring problems. European Journal of Operational Research, In press.
doi:10.1016/j.ejor.2006.09.095, 2007.

[34] S. Matsui and K. Tokoro. Improving the performance of a genetic algorithm for
the minimum span frequency assignment problem with an adaptive mutation rate
and a new initialization method. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 1359–1366, San Francisco, CA, USA,
July 2001. Morgan Kaufmann Publishers.

[35] C. McGeoch, P. Sanders, R. Fleischer, P. R. Cohen, and D. Precup. Using finite exper-
iments to study asymptotic performance. In R. Fleischer, B. Moret, and E. Meineche
Schmidt, editors, Experimental Algorithmics: From Algorithm Design to Robust and
Efficient Software, volume 2547 of Lecture Notes in Computer Science, pages 93–126.
Springer Verlag, Berlin, Germany, 2002.

[36] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts: A
heuristic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58(1-3):161–205, 1992.

[37] R. Montemanni. Upper and lower bounds for the fixed spectrum frequency assignment
problem. PhD thesis, Division of Mathematics and Statistics, School of Technology,
University of Glamorgan, UK, 2001.

[38] D. C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, sixth
edition, 2005.

[39] V. Phan and S. Skiena. Coloring graphs with a general heuristic search engine. In
Johnson et al. [29], pages 92–99.

[40] S. Prestwich. Coloration neighbourhood search with forward checking. Annals of
Mathematics and Artificial Intelligence, 34(4):327–340, 2002.

[41] S. Prestwich. Constrained bandwidth multicoloration neighbourhoods. In Johnson
et al. [29], pages 126–133.

[42] S. Prestwich. Hybrid local search on two multicolouring models. In International
Symposium on Mathematical Programming, Copenhagen, Denmark, 2003.

[43] S. Prestwich and A. Roli. Symmetry breaking and local search spaces. In R. Barták
and M. Milano, editors, CPAIOR, volume 3524 of Lecture Notes in Computer Science,
pages 273–287. Springer, 2005.

[44] F. S. Roberts. T-colorings of graphs: Recent results and open problems. Discrete
Mathematics, 93(2-3):229–245, 1991.

29

[45] H. U. Simon. Approximation algorithms for channel assignment in cellular radio
networks. In Fundamentals of Computation Theory, volume 380 of Lecture Notes in
Computer Science, pages 405–415. Springer Verlag, Berlin, Germany, 1989.

[46] K. N. Sivarajan, R. J. McEliece, and J. W. Ketchum. Channel assignment in cellular
radio. In Proceedings of the 39th IEEE Vehicular Technology Conference, pages 846–
850, 1989.

[47] D. H. Smith, S. Hurley, and S. M. Allen. A new lower bound for the channel as-
signment problem. IEEE Transactions on Vehicular Technology, 49(4):1265–1272,
2000.

[48] T. Stützle. Local Search Algorithms for Combinatorial Problems — Analysis, Im-
provements, and New Applications. PhD thesis, FB Informatik, Technische Univer-
sität Darmstadt, Darmstadt, Germany, 1998.

[49] B. A. Tesman. Set T -colorings. Congressus Numerantium, 77:229–242, 1990.

[50] E. Tsang and C. Voudouris. Solving the radio link frequency assignment problem
using guided local search. In NATO Symposium on Radio Length Frequency Assign-
ment, Aalborg, Denmark, 1998.

[51] C. Voudouris. Guided Local Search for Combinatorial Optimization Problems. PhD
thesis, University of Essex, Department of Computer Science, Colchester, UK, 1997.

[52] J. P. Walser. Feasible cellular frequency assignment using constraint programming ab-
stractions. In Proceedings of the Workshop on Constraint Programming Applications,
held in conjunction with CP96, Cambridge, Massachusetts, USA, 1996.

30

