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1 Introduction

The comparison of stochastic algorithms for optimization requires the use of appropriate sta-
tistical methods for the analysis of results. Commonly used parametric tests, like the t-test or
ANOVA procedures in experimental design, are based on the assumption that algorithms’ re-
sults are normally distributed. However, this assumption is often violated because the distri-
bution of the cost values of the final solutions is commonly very asymmetric. For example,
in the case of minimization problems the distribution is likely to be bounded on the left and
skewed to the right.

The alternative to parametric statistical methods are non-parametric methods such as rank-
based tests and permutation tests. These tests typically rely on less strong assumptions than
parametric tests and especially refrain from the assumption of normality. While rank-based
tests are widely known and applied, permutation tests appear to have been ignored so far and
we are the first to present their application in the analysis of experimental designs on stochastic
optimizers. We focus on the analysis of complete block designs, where the algorithms constitute
the treatment factor and instances the blocking (or nuisance) factor. We consider two designs:
running each algorithm once on various instances and running each algorithm several times
on various instances. For the same number of experiments the first setting guarantees that
the variance of the resulting average performance estimate is minimized [1]. Nevertheless, the
second setting is commonly used in many publications and is specially relevant if relatively
few benchmark instances are available. We do not consider the case of running algorithms
several times on only one instance, because this setting is not relevant for generalizing the
performance of algorithms in practice.
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2 Statistical methods

In presence of results on several instances the results must be normalized because different
instances may imply differ scales. A common transformation is to convert the result c(i) on in-
stance i into the relative deviation from the optimal solution cmin(i), i.e.,
e1(c, i) = (c(i) − cmin(i))/cmin(i). Alternatively, a measure that guarantees invariance under
some trivial transformations is e2(c, i) = c(i)−cmin(i)

cmax(i)−cmin(i) , where cmax(i) is the worst solution for
instance i [12]. If cmin and cmax cannot be computed efficiently, which is typically the case
for NP-hard problems, surrogate measures must be used like the best known solution value
and the value returned by some simple heuristic, respectively. Differently, for the application
of rank-based tests, data are transformed into ranks within each instance. This removes the
need for normalization but necessarily reduces the amount of information, because it neglects
the entity of the differences between algorithms on the instances.

Statistical tests are used to determine whether the observed differences are real or are due
to chance. If the “parametric” distribution assumptions are valid, then the distribution of
some test statistics may be derived theoretically. However, if all the parametric assumptions
are not satisfied, it is still possible to derive the distribution of a test statistic from the origi-
nal data by the use of permutation tests. A permutation test of hypotheses works as follows:
Firstly, a statistic S is chosen and its value S0 = S(X) is computed from the original set
of observations X. Secondly, the permutation distribution of S is constructed by generating
all possible rearrangements (permutations) of the observed data among the algorithms and
computing the value of the test statistic S on each rearrangement X∗: S∗ = S(X∗) (rear-
rangements correspond to exchanging a number of observations between the treatment that
are compared). Thirdly, the upper α-percentage point z of the distribution of S∗ is derived
(in case of one-sided tests) and the null hypothesis (H0) of no difference between treatments
is accepted or rejected depending on whether S0, measured on the original observations, is
smaller or larger than the z value. If the sample size is not very small, generating all pos-
sible permutations at the second step becomes computationally prohibitive; in this case, an
approximate permutation distribution can be obtained by a re-sampling procedure without
replacement from the space of all permutations. With a sample of size B, the value z in the
third step is #{S∗ ≥ z}/B = α (for one-sided test). Rank-based tests are simply permutation
tests applied to the ranks of the observations rather than their original values. Since for a
given sample size, ranks have the same values, the critical values of the test statistics can be
tabulated and heavy computations be avoided [6].

Design 1: One single run on various instances. The data consist of b mutually in-
dependent k-variate random variables X = (Xh1, Xh2, . . . , Xhk), with h = {1, . . . , b}, b the
number of instances (i.e., the blocks) and k the number of algorithms (i.e., treatments). The
random variable Xhi describes the observation relative to the i-th algorithm on instance h.
The data can be arranged in a matrix as shown in Figure 1.

The question of interest is whether the algorithms behave differently. To test this, each
measured response Xhi is expressed as the linear sum τ + µi + θh + εhi, where τ is the “true
response”, εhi is an error given by the presence of nuisance variation, µi are the algorithm
effects, and θh are the instance effects (we assume, a priori, that algorithms may behave
differently on different instances). The variance of the model is then decomposed in between-
group variance and within-group variance. The analysis of whether algorithms rather than
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Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X11 X12 X1k

...
...

...
...

Instance b Xb1 Xb2 Xbk

Figure 1: Design with several algorithms on various instances and one single measurement.

random variations are the main source of variance is based on the statistic S defined as:

S =
MSA
MSE

; MSA =
b

k∑
i=1

(X̄.i − X̄..)2

k − 1
; MSE =

b∑
h=1

k∑
i=1

(Xhi − X̄h. − X̄.i + X̄..)
2

bk − b− k + 1
(1)

where X̄.i =
∑b

h=1 Xhi/b, X̄h. =
∑k

i=1 Xhi/k and X̄.. =
∑k

i=1

∑b
h=1 Xhi/bk [4]. Under the

assumptions of independence, homoschedasticity and normality of the sampled distributions X,
the ratio S follows a Fisher distribution with degrees of freedom k − 1 and bk − b − k + 1;
this corresponds to the well known parametric analysis of variance, ANOVA [4, 9]. If, even
after some transformation of data, the assumption of normality remains violated, we may
want to restrict our assumptions to let X be independent and identically distributed (hence,
still homoschedastic but not anymore normally distributed). If H0 states that all algorithms
behave the same on a given instance, we can consider data exchangeable “within” instances
(not “between” instances). In other terms, under H0 all (k!)b permutations of data, obtained
by the rearrangement of the k observations per instance, are equally likely. The permutation
test uses the test statistic of Equation 1 or the equivalent version S′ =

∑k
i=1 (

∑b
h=1 Xhi)

2 [5].
If also the assumption of homoschedasticity is not verified, the transformation of data into
ranks within each block removes the effect of outliers and rank-based test appear to be safer
against error. In that latter case, the Friedman test is the appropriate rank-based test [3, 6].

Once the null hypothesis that all algorithms perform the same has been rejected, a re-
searcher is typically interested in statistically examining which algorithms perform signifi-
cantly better than others. In an all-pairwise comparison, each algorithm is compared to every
other algorithm which entail a family of c = k(k − 1)/2 tests. Multiple comparisons can
be carried out by computing simultaneous confidence intervals [7]. Confidence intervals are
determined for the differences between the observed means X̄.i and X̄.j of any pair of treat-
ments i and j with mean response µi and µj . Then, the differences are declared significant
if |X̄.i − X̄.j | > MSD, where MSD is the minimum significant difference derived from the
corresponding confidence interval. Well known parametric methods for computing MSDs are,
for example, Scheffé’s method or the more powerful Tukey’s Honest Significant Difference
method [7, 4]. An algorithm for the permutation approach for computing MSDs between two
treatments i and j is given under the Design 2, in Algorithm 2, and can be easily adapted to
the current design by removing the third index in all the X terms. The algorithm extends
the procedure Compute pairwise MSD, described in [10], for computing confidence intervals for
mean differences between two treatments to the case of c comparisons. In order to maintain the
probability that all c confidence intervals contain the corresponding parameter at the defined
level of confidence 1− α and thus to guarantee that the rate of making incorrect consequent
decisions remains the nominal one, the procedure Compute pairwise MSD is repeatedly ap-
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Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X111, . . . , X11r X121, . . . , X12r X1k1, . . . , X1kr

...
...

...
...

Instance b Xb11, . . . , Xb1r Xb21, . . . , Xb2r Xbk1, . . . , Xbkr

Figure 2: Design with several algorithms on various instances and repeated measures.

plied until an interval width is found that satisfies all c pairwise comparisons simultaneously.
A rank-based method for computing MSDs can be derived from the Friedman test [3]. In this
case, the results of all algorithms are ranked jointly within each instance, and differences of
any two algorithms i and j are declared significant if |R̄i−R̄j | > MSD, where R̄l is the average
rank of algorithm l. Alternatively, the Wilcoxon matched-pairs signed-ranks test with Holm’s
adjustment of the comparison-wise α-level [11, 3] can be used on each pair of algorithms. In
[7] this method is said to be preferable over the Friedman test.

The graphical representation of simultaneous confidence intervals used in the parametric
case may be extended also to the other two cases. The plot is obtained by attaching error
bars derived by the MSD values to a scatter plot of the estimated effects versus algorithm
labels. The length of the error bars are adjusted so that the population means of a pair of
treatments can be inferred to be different if their bars do not overlap, i.e., X̄i±MSD/2. This
representation is limited to the case of balanced designs which, however, should always be
obtainable in experiments on algorithms. We give an example of such a plot in Section 3.

Design 2: Several runs on various instances For each pair algorithm–instance r inde-
pendent runs are available, r > 1. Again, the instances are blocks and observations in different
blocks are assumed to be independent. Data may be viewed as random samples of size r of b
mutually independent k-variate random variables, X = (Xhi1, Xhi2, . . . , Xhir), where k is the
number of treatments, b the number of blocks, and r the number of observations per experi-
mental unit. The random variable Xhit is the t-th realization on block h for algorithm i. Data
may be visualized as in Figure 2.

Two cases may be distinguished. The case in which the interaction between individual
instances and algorithms is considered unimportant and the case in which algorithms may rank
differently on different instances and therefore an interaction term (θα)hi must be included in
the linear model. This gives rise to two slightly different ratio statistics based on Equation 1
with, respectively,

MSE =

b∑
h=1

k∑
i=1

r∑
t=1

(Xhit − X̄h.. − X̄.i. + X̄...)
2

bkr − b− k + 1
or MSE =

b∑
h=1

k∑
i=1

r∑
t=1

(Xiht − X̄jh.)
2

bk(r − 1)
(2)

Again, under the parametric assumptions the statistic S from Equation 1 follows the Fisher
distribution with degree of freedom k − 1 and the values at the denominators of MSE from
Equation 2. Permutation tests for this design require the use of synchronized permutations [10].
An intermediate statistic is computed within each instance h as Sij|h =

∑
t Xhit −

∑
t Xhjt.
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Procedure Compute statistic();
S∗ = 0; generate a random permutation π of labels {1, . . . , 2r};
for all k(k − 1)/2 distinct pairs (i, j) do

for h = 1, . . . , b do
Let Xpool = Xhi ∪Xhj be the set of the 2r pooled observations;
X∗

hi = Xpool[π(1), . . . , π(r)];
X∗

hj = Xpool[π(r + 1), . . . , π(2r)];
S∗ = S∗ + (

∑
t X∗

iht −
∑

t X∗
jht)

2;
end

end

Algorithm 1: An algorithm for synchronized permutations in a two factors design.

Then, for each instance there are k(k − 1)/2 intermediate statistics, each comparing two dif-

ferent algorithms. The final statistic is S =
∑

i<j

( ∑b
h=1 Sij|h

)2
, that, with synchronized

permutations, is uncorrelated from the effect of interaction. Each S∗ for deriving the distribu-
tion of S can be implemented as indicated by Algorithm 1. The use of the same permutation π
ensures that the number of observations swapped between algorithms i and j is maintained
synchronized among the instances. Nevertheless, if the number of replicates is small (say lower
than 5), Algorithm 1 must be slightly modified, as its minimal distinguishable α value becomes
too small. The algorithm for small number of replicates given in [2] shuffles the observations
within the instances thus enlarging the number of considered permutations while guaranteeing
that each permutation has equal probability to appear. For rank-based tests the Friedman
test is extended to this design by an appropriate adjustment of the test statistics [3].

As in Design 1, once the algorithms are found to behave differently one may proceed to the
all-pairwise comparisons. In the parametric case, the Tukey and Scheffe’s procedures are easily
extended. With permutation methods the MSD intervals are computed through Algorithm 2.
Differently from Design 1, the synchronized permutations of Algorithm 1 are now necessary.
MSD intervals for rank-based tests are again obtained by a variation of the Friedman’s test [3].

Note that if there are interactions between instances (for example, if the instances stem
from instance classes with different characteristics) it may still be reasonable to infer an av-
erage performance over the instances. Nevertheless, this procedure may hide the presence of
differences or lead to wrong inference when instances are not balanced through the classes.
In this case it is more correct to consider the presence of stratification variables such as in-
stance size or instance structure, and report a separate analysis for each combination of these
variables.

3 An example analysis on the Graph Coloring Problem

We exemplify the methods presented above on the comparison of algorithms for the well-
known Graph Coloring Problem. We compare 9 algorithms, comprising state-of-art and newly
developed algorithms, on the class of Flat random graphs [8]. Only six such graphs are available
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Procedure Compute all-pairwise MSD();
Choose an estimated error ε related with B;
Start: Choose a positive number MSD;
for all (i, j) of the k(k − 1)/2 pairwise comparisons do

if Compute pairwise MSD(i, j) returns false then goto Start;
end
Return MSD.

Procedure Compute pairwise MSD(i, j);
1. Subtract X̄hi. − X̄hj. + MSD from every value of the data group relative to one

of the two algorithms, say i, obtaining the new vector Xhit(MSD) =
Xhit − X̄hi. + X̄hj. −MSD, i = 1, 2, ..., n. This vector is combined with the
vector Xhjt and constitutes the pool of observations to permute.

2. Compute the statistic S(MSD) for the observed response:
S0(MSD) =

∑
h X̄hi.(MSD)− X̄hj.(MSD).

3. By rearranging the observations B times obtain the permutation distribution
of the statistic S∗(MSD) :

∑
h (X̄∗

hi.(MSD)− X̄∗
hj.(MSD)).

4. Return “true” if the condition |#{S∗(MSD) ≤ S0(MSD)}/B − αCW /2| < ε/2 is
satisfied, else return “false”.

Algorithm 2: An algorithm for computing simultaneous MSDs in the case of repeated
measures. The algorithm allows to set the comparison-wise αCW -level to α.

online1 as benchmarking instances, therefore, we select the experimental Design 2 with 10
trials per instance. Figure 3 reports the simultaneous confidence intervals from parametric,
permutation and rank-based tests; the assumption of normality for the application of the
parametric approach is actually violated; permutation intervals are obtained with B equal to
2000. In Figure 3, the difference between any two algorithms is statistically significant if their
confidence intervals do not overlap.

The following are the main observations from the analysis. (i) At the same α-level, permu-
tation tests are slightly more powerful than rank-based tests while ANOVA is more powerful
than both but the α level could not be guaranteed because its assumption is violated. (ii)
The graphical representation of Figure 3 allows an easy and immediate visual inspection of
differences among algorithms and is an helpful tool to convey data and support tables with
numerical results, like Table 1. (iii) Rank-based tests may indicate different results due to the
particular transformation of data and the ultimate decision about which test is appropriate
depends on the final application.

The analysis presented in Figure 3 remains, however, based on the assumption that the
results of the algorithms are homoschedastic. In the case in which this assumption is also
violated, a very likely case when comparing algorithms with different characteristics, the Al-
gorithm 2 for computing MSDs becomes too conservative. In this case also ANOVA and
rank-based tests are inappropriate and alternative methods, that take this effect into account,
need to be considered.

1M. Trick. “Computational Series: Graph Coloring and its Generalizations”,
http://mat.gsia.cmu.edu/COLOR04/. Last visited March 2005.
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Figure 3: Confidence intervals for all-pairwise comparisons of stochastic algorithms for the
Graph Coloring Problem. Three statistical approaches are proposed: parametric, permutation
and rank-based. The first two procedures are based on the average error measure e2, while
the latter is based on average ranks. These measures are reported on the x-axis.

Table 1: Numerical results in terms of approximate chromatic number. For each sample of 10
runs per algorithm we report the best result, the first quartile, the median, the third quartile
and the worst result.

Instance HEA TSN1 ILS MinConf XRLF
flat300 20 0 20/20/20/20/20 20/20/20/20/20 20/20/20/20/20 20/20/20/20/20 20/20/20/21/22
flat300 26 0 26/26/26/26/26 26/26/26/26/26 26/26/26/26/26 26/26/26/26/26 33/34/34/34/35
flat300 28 0 31/31/31/32/32 31/31/32/32/32 31/32/32/32/32 31/32/32/32/32 33/34/34/34/34
flat1000 50 0 50/50/78/81/82 85/85/86/87/88 88/88/88/89/90 87/87/88/89/90 84/86/86/87/87
flat1000 60 0 87/87/88/88/89 88/88/89/89/89 89/90/90/90/90 89/89/90/90/90 87/87/87/88/88
flat1000 76 0 88/89/89/89/89 88/89/89/89/90 89/90/90/90/90 90/90/90/90/91 87/87/87/88/89

GLS SAN2 Novelty TSN3

flat300 20 0 20/20/20/20/20 20/20/20/20/20 22/23/23/24/24 33/34/34/35/35
flat300 26 0 33/33/33/33/33 32/33/33/33/34 29/29/31/33/34 35/35/35/36/36
flat300 28 0 33/33/33/33/34 33/33/33/33/34 35/35/35/35/35 35/35/36/36/37
flat1000 50 0 50/50/50/50/50 86/87/88/89/89 54/54/54/55/55 95/96/96/97/97
flat1000 60 0 90/90/91/92/93 88/89/89/90/91 64/64/65/65/66 96/97/97/97/97
flat1000 76 0 92/92/92/92/93 89/89/90/90/90 98/98/98/98/99 96/97/97/97/98
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