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Abstract. The Graph Colouring Problem (GCP) is a well known NP-hard problem
with many theoretical and practical applications. In this paper we introduce a new
local search algorithm based on a very large scale neighbourhood. We provide an
extensive numerical comparison between this method and several other local search
techniques considering also the embedding of the local search into more complex
schemes like Iterated Local Search or Tabu Search.

1 Introduction

The Graph Colouring Problem (GCP) plays a central role in graph theory, has direct appli-
cations in real life [4, 5, 29], and is related to many other problems such as timetabling [28,
14, 34] and frequency assignment [21]. A K-colouring (assignment) of an undirected graph
G = (V, E), where V is the set of |V | = n vertices and E ⊆ V × V the set of edges, is a
mapping Ψ : V 7→ {1, 2, . . . , K} that assigns a positive integer from {1, 2, . . . , K} (repre-
senting the colours) to each vertex. We say that a colouring is feasible if the end nodes of
every edge in E have assigned a different colour, i.e. ∀[u, v] ∈ E : Ψ(u) 6= Ψ(v). We call
conflict the situation when two nodes between which an edge exists have the same colour
associated to them. We say that a colouring is infeasible if at least one conflict occurs. Al-
ternatively to the formulation as an assignment problem, the GCP can also be represented
as a partitioning problem, in which a feasible K-colouring corresponds to a partition of the
set of nodes into K sets C1, . . . , CK such that no edge exists between two nodes from the
same colour class.

The decision version of the Graph Colouring Problem asks whether for a given graph
G and a given K a feasible K-colouring can be found. In the optimisation version, the
objective is to find the minimum number K such that a feasible K-colouring exists; this
minimum number K is also known as the chromatic number χG of G. One approach to
solving the optimisation GCP is to treat it as a sequence of decision problems. In this case,
one can starts with an initial, possibly large number of colours K that is then repeatedly
decreased by one, if the answer to the decision problem with K colours is found. An opti-
mal solution to the optimisation problem is obtained when for a certain number of colours
K no feasible assignment exists; this means that χG = K + 1.

The GCP is NP-hard [22]; exact algorithms are, for many instance classes, limited
to rather small size problems [8, 15, 23, 32]. Therefore, large instances are often solved by
approximate methods that are used to find sub-optimal colourings. Most of the successful
approximate algorithms rely on effective local search strategies. In this paper we introduce a
new local search algorithm that searches a large neighbourhood, based on ideas introduced
by Thompson et al. [35, 36]; the neighbourhood searched is a cyclic exchange neighbour-
hood, a generalisation of the 2-exchange neighbourhood. We experimentally compare the
use of this local search against other known local search techniques for the GCP. The com-
putational results show an improved performance of our local search on several classes
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of instances when using the plain local search. However, the advantage of using our local
search becomes less clear when incorporating the different local search schemes into Iter-
ated Local Search and Tabu Search. In fact, in the latter case, only for specific graph classes
our local search performs better than search methods that use simpler neighbourhoods.

Our paper is structured as follows. In Section 2 we shortly review approximate algo-
rithms for the GCP, describe the known local search methods that we use in our computa-
tional study, and introduce our new local search algorithm. We present numerical results in
Section 3 and conclude in Section 4.

2 Approximate algorithms for the GCP

Approximate algorithms for the GCP can broadly be classified into construction heuris-
tics and improvement algorithms. Constructive algorithms typically build feasible solutions
by iteratively colouring nodes of the graph and generate feasible colourings. Construction
heuristics are typically used to generate an initial solution, from where improvement algo-
rithms start their search. One well known example is the greedy algorithm. Given a set of
empty colour classes {C1, . . . , CK} (with K = |V |) and a permutation π of {1, . . . , n} the
greedy algorithm can be described as:

greedy algorithm(G, π)

begin
K = |V |.
C1 = {vπ(1)}, C2 = ∅, . . . , CK = ∅.
for i = 2, . . . , n do

Let h(i) = min{h : ∀vj ∈ Ch, [vi, vj ] /∈ E}.
Ch(i) = Ch(i) ∪ {vπ(i)}.

enddo
Let K = max{h : Ch 6= ∅}.
Return the K-colouring, i.e. K and C1, . . . , CK .

end

Clearly, the result of this greedy algorithm depends on the permutation π used [13]; it
can further be improved by applying it iteratively using appropriately determined permuta-
tions [13]. Several other constructive algorithms exist that use more sophisticated selection
criteria; these include DSATUR [7] and Recursive Largest First [28]. These algorithms may
be further enhanced by using backtracking [6, 7, 27, 32].

The most commonly used improvement method is local search. There are two main
ways of applying local search to the GCP.

1. Solve the GCP as a sequence of decision problems with fixed number of colours. At
each iteration a decision GCP is solved. The evaluation function to be minimised is
typically taken to be the number of conflicts of the assignments. When a feasible as-
signment (a solution with evaluation function value zero) is found, the next decision
problem is defined by reducing number of colours by one and reapplying local search.
This is done until for a certain number of colours no feasible solution can be found.
The algorithm from this class that we use in our paper is given next:



Local Search for the Colouring Graph Problem. A Computational Study. 3

Algorithm 1 An algorithm that solves the GCP as a sequence of decision GCPs

Step 1:Generate a random permutation π of the set of nodes V .
assignment=greedy algorithm(G, π).

Step 2: while assignment is feasible do
candidate=reduce colours(G, K, C1, . . . , CK).
if candidate is not feasible then

assignment=local search(candidate).
enddo

The reduce colours(G, K, C1, . . . , CK) procedure that we use starts by removing
a random colour and continues by recolouring the colour free nodes according to the
DSATUR constructive heuristic of Brélaz [7].

2. Solve the GCP leaving the number of colours variable. In this case the number of
colours used may increase and decrease at run time. Typical approaches either include
two components into the evaluation function, one that leads the search towards assign-
ments with fewer colours and the other that drives in feasible assignments, or always
maintain feasible colourings [27]. The general algorithm for GCP that we use is much
simpler in this case: an initialisation step, identical to Step 1 of Algorithm 1, followed
by local search with the initial colouring being the one output by the initialisation step.

Central to any local search algorithm is the neighbourhood, which defines the set of so-
lutions that can be reached from a current solution by one move, and the evaluation function
used to rate solutions. Concerning neighbourhoods, it is clear that the larger the neighbour-
hood size, the better the solutions that can be reached in one single move; however, this
comes at an increased cost of searching for improved solutions.

Therefore, for the GCP the most common neighbourhood is the 1-exchange neighbour-
hood of Hertz and De Werra [25], where at each local search step the colour assigned to
one vertex is changed. This neighbourhood can be searched efficiently using appropriate
data structures even when using a best-improvement pivoting rule.

However, a recent trend in the design of local search algorithms is to look for large
neighbourhoods that can be explored efficiently. For many problems like the traveling sales-
person problem [24, 30], the generalised assignment problem [38], and many others [11, 3],
local search algorithms exploiting large neighbourhoods are currently at the core of new
state-of-the-art algorithms.

In this paper, we investigate a new neighbourhood search method that uses a very large
scale neighbourhood, and we propose an algorithm that allows us to search the neigh-
bourhood efficiently. This is one of the first attempts to attack the GCP using local search
in larger neighbourhoods than the 1-exchange one. The only other large neighbourhood
searches we are aware of are the Kempe chains neighbourhood of Morgenstern and Shapiro [33]
and the ejection chain approach of González-Velarde and Laguna [37]. We will compare
the performance of the new neighbourhood search against three other known local search
methods that we briefly describe next.

2.1 Known local search approaches to the GCP

The first local search described falls in the category of the methods that solve the GCP
as a sequence of decision problems. The last two local search algorithms solve the GCP
directly, leaving the number of colours variable.
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Local search with 1-exchange neighbourhood. Given a colouring, a 1-exchange move
changes the colour of exactly one node. The evaluation function we use counts the number
of conflicts in the assignment.

Given K and an infeasible assignment, at each iteration of the local search we follow
a best-improvement strategy that examines all possible 1-exchange moves to discover the
maximal reduction in the evaluation function. If several 1-exchange moves produce the
same result, one of them is chosen uniformly at random [16, 18]. To reduce the size of
the neighbourhood, we consider only those moves that affect vertices that are currently
involved in a conflict. To speed up the evaluation of moves we use standard speed-up tech-
niques [18] that allow to perform the first move in time O(n2K), while each subsequent
move can be done in O(nK) in the worst case (however, the neighbourhood evaluation is
much faster for sparse graphs [18]).

Local search with penalty function. The penalty function local search uses a 1-exchange
neighbourhood and the number of colours K is left variable. Formally, given a partition
C = (C1, . . . , CK), 1 ≤ K ≤ |V |, a neighbouring partition is obtained by changing the
colour of one node, i.e., a node vi is removed from the class Ch(i) to which it belongs, and
it is moved into a class Cj , 1 ≤ j ≤ K + 1. If j = K + 1, then a new colour was intro-
duced. The evaluation function we consider is the one proposed by Johnson et al. [27]. The
function has two components: the first one favours large colour classes (and thus empties
the smaller ones and biases the search towards a low number of colours), while the second
one reduces the number of conflicts. If E(Ci) is the set of edges from E that have both ends
in Ci, the evaluation function is:

f(S) = −
K∑

i=1

|Ci|
2 +

K∑

i=1

2|Ci||Ei|. (1)

Local minima for this function correspond to feasible colourings [27]. Based on pre-
liminary experimental results, we decided to adopt a first improvement strategy.

Local search with Kempe chain neighbourhood. A Kempe chain is the set of nodes
that form a connected component in the subgraph G′ of G induced by the nodes that belong
to two colour classes Ci and Cj , i 6= j. A Kempe chain interchange produces a new feasible
colouring by swapping the colour class labels assigned to the vertices belonging to some
specified Kempe chain. The neighbourhood of a given partition C is the set of feasible
colourings that can be obtained from C by performing a Kempe chain interchange.

Let T be a Kempe chain in the subgraph G′. A Kempe chain interchange produces a
colouring by replacing Ci with (Ci \ T ) ∪ (Cj ∩ G′) and Cj with (Cj \ T ) ∪ (Ci ∩ G′).
We note that if T = Ci ∪ Cj , the interchange would be simply a relabelling of the colour
classes and therefore is to be avoided. The evaluation function that we use is:

f(A) = −
K∑

i=1

|Ci|
2. (2)

Based on preliminary experiments, we chose to use a first improvement strategy. If more
than one Kempe chain is available, we choose the best one, breaking ties with random
selections.
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2.2 Very large scale neighbourhood search

We consider the general neighbourhood proposed by Thompson et al. [35, 36] for par-
titioning problems. Since the graph colouring problem can be modelled as a partitioning
problem, the neighbourhood that we introduce next can be used directly by our local search
approach. In this approach, we attack the GCP as a series of decision problems.

The neighbourhood we introduce is the cyclic exchange neighbourhood, which can be
seen as a generalisation of the well known two exchange neighbourhood. Instead of swap-
ping only two elements from two different subsets of a current colouring, like in the case
of a two exchange move, the cyclic exchange moves several elements, each belonging to a
different subset. Formally, a cyclic exchange between l subsets (without loss of generality
we can assume the sets to be C1, . . . , Cl and the elements v1, . . . , vl with vi ∈ Ch(i)) is
represented by a cyclic permutation π of length l, π 6= 1, where π(i) = j means that vertex
vi moves from subset Ch(i) into subset Cj . The cyclic exchange modifies the sets of the
partition and therefore their costs. The cost difference for each subset will be the difference
between the cost of the subset after performing the cyclic exchange and the cost of the
subset before the exchange. The cost of the cyclic exchange is defined as being the sum of
all cost differences over all subsets in the partition. A colouring C ′ is said to be a neighbour
of the colouring C if it is obtained from C after performing a cyclic exchange. The set of all
neighbours of C defines the cyclic exchange neighbourhood of C. Since this neighbourhood
is of exponential size, much larger than the one or two exchange neighbourhoods, we can
expect better quality solutions, provided that we can search the neighbourhood efficiently.

Ahuja et al. [2] showed that the problem of finding the best neighbour within a cyclic
exchange neighbourhood can be modelled as the problem of finding the minimum cost
cycle that uses at most one node from each subset in a new graph G′ = (V ′, A′), called the
improvement graph, induced by the graph G = (V, E) and the current colouring (partition)
C = {C1, . . . , CK} considered. The set of nodes of G′ is V ′ = {1, . . . , n}, each node in V ′

corresponding to one node in V ( i corresponds to vi). The improvement graph contains the
arc (i, j) if vi ∈ Ch(i), vj ∈ Ch(j), and Ch(i) 6= Ch(j), i.e. vi, vj are coloured differently.
The set of nodes V ′ is split into K subsets T1, . . . , TK , induced by C, i.e. the elements of
Th are in one-to-one correspondence with the elements of Ch, for each h = 1, . . . , K.

If i ∈ Th(i) and j ∈ Th(j), we associate a cost c(i,j) with the arc (i, j) ∈ A′ equal to
the difference between the cost of the set Th(j) \ {j} ∪ {i} and the cost of the set Th(j).
The cost of an arc (i, j) is defined to be the difference between the number of conflicts
in Ch(j) \ {vj} ∪ {vi} and the number of conflicts in Ch(j), that is, the cost of an arc is
the difference in the number of conflicts when moving node i into colour class Ch(j) and
removing node j from Ch(j). For the GCP, the cost associated with any arc (i, j) in G′ can
also be defined as the difference between the number of arcs adjacent to vi in Ch(i) \ {vj}
and the number of arcs adjacent to vj in Ch(j). Hence the construction of the improvement
graph can be done in O(n2K), while its updating can be done in O(n2).

Thompson and Orlin [35] showed that there is a one-to-one correspondence between the
cyclic exchanges in G, with respect to C, and the subset-disjoint cycles in the improvement
graph G′. Clearly, an improving cyclic exchange will correspond to a subset disjoint cycle
of negative cost.

Defined as above, a cyclic exchange would always maintain the cardinality of the sub-
sets of the partition of V considered. This is avoided by Ahuja et al. [2] by introducing a
subset of dummy nodes. Clearly, any cyclic exchange that would involve a dummy node
would modify the cardinality of the subsets. Such an exchange can be seen as being based
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on a path, instead of a cycle. In what follows we will make the distinction between such ex-
changes. We will therefore refer to cyclic exchanges and to path exchanges (see Figure 1).
Finally, we note that in our approach we are only interested in finding improving cyclic or
path exchanges. Therefore we try to find only subset disjoint negative cost cycles.
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Fig. 1. (a) Cyclic exchange. (b) Cyclic exchange using a dummy node (from set D). (c) Path exchange.

We now present an exact algorithm based on dynamic programming ideas implemented
via labels [1]. We then propose several ways of truncating it, such that the algorithm be-
comes an efficient heuristic. The algorithm makes use of the idea of subset disjoint paths,
i.e. paths that visit every subset at most once. It is clear that if an arc exists between the
last and the first node of such a path, then the path can be closed to form a a subset disjoint
cycle.

In our algorithm, each subset disjoint path will be represented by a label. For such a
path p = (i1, . . . , ir), we call i1 the start node of p, denoted by s(p) and ir the end node
of p, denoted by e(p). We associate a binary vector w(p) ∈ {0, 1}K with the path p, where
wh(p) = 1 if and only if p visits the subset Th. The cost of p, denoted by c(p), is the total

cost of the arcs in the path, i.e. c(p) =

r−1∑

j=1

c(ij ,ij+1). The label associated with p is defined

as the four-tuple (s(p), e(p), c(p), w(p)).
We say that (s1, e1, c1, w1) dominates (s2, e2, c2, w2) if s1 = s2, e1 = e2, c1 ≤ c2,

w1 ≤ w2, and the labels are not equal; in extension of this definition we say that the path p1

dominates the path p2 if the label corresponding to p1 dominates the label corresponding
to p2. We call treatment of a path the extension of that path along all outgoing arcs. After
treatment, a path is marked as treated. At any time, only paths that have not previously
been treated are selected for treatment. We now give in detail an algorithm for finding
subset disjoint negative cost cycles, based on an all-pairs shortest path approach.

Algorithm 2 An algorithm that finds subset disjoint negative cost cycles

Step 1: Set P = {(i, j) : (i, j) ∈ A′, c(ij) < 0}, negative cost paths of length 1.
Mark all paths in P as untreated.
Initialise the best cycle q∗ = () and c∗ = 0.

Step 2: for each p ∈ P do
if (e(p), s(p)) ∈ A′ and c(p) + c(e(p),s(p)) < c∗ then

q∗ = the cycle obtained by closing p and c∗ = c(q∗).
enddo

Step 3: for l = 2, . . . , K do
while there exists an untreated path in P of lengh l do

Select some untreated path p ∈ P of length l.
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for each (e(p), j) ∈ A′ s.t. wx(j)(p) = 0 and c(p) + c(e(p),j) < 0 do
Add the extended path (s(p), . . . , e(p), j) to P as untreated.

enddo
if (j, s(p)) ∈ A′ and c(p) + c(e(p),j) + c(j,s(p)) < c∗ then

q∗ = the cycle obtained by closing the path (s(p), . . . , e(p), j).
c∗ = c(q∗).

if some criteria are satisfied then remove some dominated paths from P .
enddo

enddo

Algorithm 2 is an exact algorithm. However, since the number of colours can be very
large, the algorithm used in its exact form can become very inefficient. We therefore chose
to use the algorithm as a heuristic, by limiting it in some ways. Firstly, we put a limit on the
length of the cycle: at Step 3, l will not go all the way to K, but stop when a limit imposed
by us is reached. Secondly, we reduce the state space of the algorithm by imposing a limit
M on the number of untreated labels kept at any time. We order the untreated labels in
increasing order of their cost. In our implementation the labels are kept on pairs of nodes,
and only the cheapest M untreated labels on any pair will be recorded. Finally, when a new
label is created, we do not check dominance along the whole list of labels, but only up to
the position in the list where the new label is inserted.

For the case when we solve the GCP as a sequence of decision problems, we chose
to consider not only the neighbourhood structures that we defined (1-exchange, cyclic and
path exchange) but also combinations of them. Many such combinations can be considered;
in this paper however we only use four of them:

– C+1: Union of cyclic and 1-exchange. At each iteration of the local search the best
move in these neighbourhood is chosen.

– C+P+1: Union of cyclic exchange, path exchange, and 1-exchange. We note that when
negative cost arcs (paths of length one) exist, then the best move in a path exchange
neighbourhood coincides with the best move in an 1-exchange neighbourhood. A 1-
exchange move however can be a move that does not necessarily improve the current
colouring, equivalent to a path of length one of positive cost that, in our approach,
would not be discovered by Algorithm 2.

– (C+P)–1: Systematic change of two neighbourhoods: the union of cyclic and path ex-
change and the 1-exchange. An improving move is searched in the first neighbourhood
until none can be found. Then the second neighbourhood is examined.

– 1–(C+P): Like the previous one, with the order of the two neighbourhood reversed.

In the following we will refer to these variants also as very large-scale neighbourhood
searches (VLSN).

3 Experimental Results
We now present and discuss numerical results for techniques that use the local search meth-
ods described in the previous section. We also give results obtained when straightforward
implementations of metaheuristics are used.

Each local search algorithm will be run many times on a single instance. For each
instance we check whether the differences between the solutions found by the algorithms
are statistically significant or not. To do so, we first use the Kruskal-Wallis one-way analysis
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of variance by ranks on all the samples of one instance. If this test rejects the null hypothesis
that all algorithms give the same results, we test all the possible pairs of samples by means
of the pairwise Wilcoxon rank-sum test using the method of Holm to take the multiple
comparisons into account [12]. In the presentation of the results we call an algorithm better
than another on a single instance only if it is significantly better according to these tests, at
a significance level of 5%.

Benchmark Problems We tested the algorithms on some of the benchmark instances
proposed for COLOR02/03 [10]; the instances we used can be divided into the following
classes.

– Random graphs. Instances from Johnson [27] in which for a given set of vertices the
graph is obtained by including each possible edge with a probability p. The chromatic
number for these instances is unknown.

– Leighton graphs. Structured graphs generated by a procedure that uses the number of
vertices, the desired chromatic number, the average vertex degree and a random vector
of integers to generate a certain number of cliques [28]. The chromatic number of these
instances is known.

– Queens graphs. Given an n × n chess board, a queen graph is a graph with n2 nodes,
each corresponding to a square of the board. Two nodes are connected by an edge if the
corresponding squares are in the same row, column or diagonal. The chromatic number
is not known; however, it is known to be at least n.

– Class scheduling graphs. Graphs from course timetabling. The vertices corresponding
to classes; an edge between two vertices exist if a student has to attend both classes or
if both classes are taught by the same person [29].

In the following we present only computational results for a subset of the available
instances; for the other instances of the specific classes the computational results show the
same tendency.

Simple local search In the first experiment, we are interested in the distribution of the
quality of the colourings returned by the different local search algorithms. Each local search
is run 100 times for each instance of our test bed. The initial solutions were obtained using
the greedy algorithm with different random permutations. Results for some instances are
plotted in Figure 2 using box-plots.

The best performance is obtained by the very large scale neighbourhood variants or the
Kempe chain algorithm. This is more evident on the random graphs with low density, the
queens, and the Leighton graph. However, for higher density random graphs the Kempe
Chains perform better, which is also the case for the scheduling instance. The worst per-
formance overall is obtained by the 1-exchange local search algorithm. However, this is
not necessarily due only to the neighbourhood definition, because the penalty function al-
gorithm, which changes the colour of only one node for each move, performs much better
on some few instances; we believe that the difference is rather due to the different evalu-
ation functions used and the way of attacking the GCP (sequence of decision problems or
variable number of colours).

Random restart local search The computation time was not taken into account when
we were looking at the distribution of the colourings found by the various local searches.
Therefore, we repeated the same type of experiments by allowing each algorithm to run for
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Fig. 2. For each instance we give the distribution of colours found by the local searches using box-
plots. The central box shows the data between the quartiles, the median is represented by a line in the
central box. “Whiskers” extend to the very extremes of the data. If there is only one line visible, this
indicates that all trials with one algorithm returned the same number of colours. Each algorithm was
run using 100 independent trials.

the same amount of time; this is equivalent to randomly restarting the local searches from
random greedy solutions as often as possible in the allocated time and using as an output
the best solution found within the time limit. The time limit is fixed to be the time required
to run 20 random restart using the slowest local search, (C+P+1). We run 10 such trials
per local search and instance and we record the number of colours found. Distributions of
some of the results obtained with 10 trials for each algorithm are given in Figure 3.

In general, for all the algorithms the colourings returned are slightly better, however
the relative ranking of the algorithms remains almost unchanged. It has to be said that for
all the local searches, the results are in part quite far from the chromatic numbers or the
best known solutions. We therefore try to improve our local searches by means of some
straightforward implementations of metaheuristics.

Iterated Local Search Iterated local search (ILS) is a convenient way of iterating over a
local search without incurring the known disadvantages of a random restart [31]. ILS does
so by perturbing a locally optimal solution s, leading to some intermediate solution s′, and
then applying local search to s′, which finally leads to a (hopefully) new local optimum s′′.
An acceptance criterion then says whether or not we apply the next perturbation to s or s′′.

An application of ILS to the GCP is described in Chiarandini and Stützle [9]. Here
we use the same perturbation scheme. Shortly, when a local optimum is reached a number
of randomly chosen colour classes are emptied and the vertices reallocated by the greedy
algorithm, avoiding the re-assignment to the same colour class. The number of colours to
remove is given by the current number of colours multiplied by a factor γ, γ < 1. We fixed
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Fig. 3. Computational results of 10 independent trails for each algorithm with random restart. For an
explanation of the box-plots we refer to the caption of Figure 2. See text for more details.

γ to 0.1. The perturbation is always applied to s′′, that is, s′′ is accepted independent of its
quality.

We run seven variants of ILS that differ only in the local search chosen. Each variant
was given the same maximum time as in the random restart case; the computational results
are given in Figure 4. In general, embedding the local searches into an ILS algorithm im-
proves the results over using a random restart in almost every case (compare the location
of the box-plots for the single local search algorithm of Figure 4 to those of Figure 3). On
many of the instances the relative order of the algorithms with respect to solution quality
is maintained, with the following exceptions: (i) the penalty function local search is now
much more competitive compared to the Kempe Chains and the VLSN local searches, (ii)
also the 1-exchange local search appears more competitive on the non-random graphs than
before (for example, it performs on par with VLSN local searches on the queen15 graph
and obtains a better median colouring on the school graph), (iii) using the VLSN local
searches still gives the best results on most of the instances with the main exception being
the high density random graphs, where the penalty function local search is best, and the
school graph. Hence, these results confirm that effective local search algorithms as ob-
tained by searching large neighbourhoods can give an advantage over a simpler but faster
one exchange neighbourhood, at least when incorporated into an ILS.

Tabu Search Currently, Tabu Search (TS) algorithms are at the core of the best performing
local search approaches to the GCP [17, 16, 19, 20]. Therefore, it is an obvious next step
to try to enhance the different local search algorithms tested through the use of basic tabu
search components. In particular, we adopted the simple TS scheme proposed in [16, 25]
for the 1-exchange and the k-exchange neighbourhood by forbidding the re-assignment of a
vertex to a colour for a number of iterations (tabu length) given by Random(10)+δ×|nc|



Local Search for the Colouring Graph Problem. A Computational Study. 11

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

14 15 16

DSJC500.1.col

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

60 62 64 66 68 70

DSJC500.5.col

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

145 150 155 160

DSJC500.9.col

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

9 10

DSJC250.1.col

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

76 78 80 82 84

DSJC250.9.col

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

23 24 25

le450_15d.col

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

18 19

queen15_15.col

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

19 20

queen16_16.col

oneex
C+1

C+P+1
(C+P)−1
1−(C+P)

kempe
penfunct

15 20 25

school1_nsh.col

Fig. 4. Box-plots of 10 trials for each algorithm enhanced with Iterated Local Search. The stopping
criterion was the same time limit used for obtaining the plots of Figure 3. For an explanation of the
box-plots we refer to the caption of Figure 2.

with nc being the number of conflicts in the assignment and Random(10) being a random
number uniformly distributed between one and ten. The parameter δ is set to 0.6, a value
which gave good results on average. For the penalty function approach we use the same
prohibition criterion but with a tabu length equal to Random(10) + δ × 2 × K. In the
Kempe Chains neighbourhood we forbid a chain between two colour classes Ci and Cj if
at least one vertex v ∈ Ci of the chain was in colour class Cj ; the tabu length is set to
Random(10) + δ × K. We always keep δ fixed to 0.6.

These algorithms were again run for 10 trials using the same time as before. The com-
putational results with this TS scheme, which are given in Figure 5, show a surprising
result: Now, the 1-exchange neighbourhood actually gives the best performance on most
of the instances, sometimes by a quite large margin. Similarly, the VLSN scheme that has
the largest fraction of 1-exchanges now gives on most of the instances slightly better re-
sults than the other VLSN variants, different from what was observed before. There may
be several reasons for this change in behaviour. One reason may be that a different TS
features should be used for the local search that use large neighbourhoods. In fact, the TS
scheme we used was already optimised by several researches since TS was first applied to
the GCP [17, 16, 19, 20]; therefore, there may be a bias towards favouring the 1-exchange
neighbourhood. Another reason may be that the computation times are too short for the
large neighbourhood algorithms to catch up with the TS on the 1-exchange neighbourhood.
In fact, some limited experiments with longer computation times (and a different starting
heuristic based on DSATUR) have shown that using the C+1 neighbourhood in the TS can
beat TS on the 1-exchange neighbourhood on the Queens graphs. However, more experi-
ments are required to confirm this result also for other types of graphs.
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Fig. 5. Box-plots of 10 trials for each algorithm enhanced with Tabu Search. The stopping criterion
used was the same as in Figure 3

4 Conclusions

In this work we studied a new local search algorithm using a very large-scale neighbour-
hood for the GCP. This algorithm, in addition to changes of the colour of one single ver-
tex, allows to swap the colours of a set of vertices, where each vertex belongs to a dif-
ferent colour, in a cyclic exchange. We also presented an exact and a heuristic algorithm
to search effectively through this new neighbourhood for improving exchanges. The algo-
rithm solves a Subset Disjoint Negative Cost Cycle Problem with a dynamic programming
approach [26]. Computational results comparing four VLSN variants to other existing lo-
cal search algorithms showed that (i) the VLSN variants return effectively better quality
solutions on a range of benchmark instances except of mainly large density random graphs,
where a Kempe chains local search works better, (ii) when using VLSN local search as a
black box local search in an ILS algorithm, significant improvements over a random restart
algorithm can be obtained and VLSN local search is the method of choice for low den-
sity graphs, (iii) when opening the black box to include tabu search features, the smallest
neighbourhood we tested, a 1-exchange neighbourhood, appears to be preferable over local
search algorithms using large neighbourhoods at least when run only for short computation
times. Preliminary results indicate that for some graph classes with increased run-times
the VLSN local search with tabu search features improves over the 1-exchange neigh-
bourhood in a similar tabu search algorithm. However, still further research efforts are
required to make large-scale neighbourhood search techniques fully competitive. However,
we strongly think that the results we report show that using large neighbourhoods offers a
promising possibility to advance the state-of-the-art in GCP solving.
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31. H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics, volume 57, pages 321–353. Kluwer Academic Pub-
lishers, Norwell, MA, 2002.

32. A. Mehrotra and M. Trick. A column generation approach for graph coloring. INFORMS Journal
On Computing, 8(4):344–354, 1996.

33. C. Morgenstern and H. Shapiro. Coloration neighborhood structures for general graph coloring.
In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pages 226–
235. Society for Industrial and Applied Mathematics, 1990.

34. A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–127, 1999.
35. P.M. Thompson and J.B. Orlin. The theory of cycle transfers. Technical report, Operations

Research Centre, MIT, Cambridge, MA, 1989.
36. P.M. Thompson and H.N. Psaraftis. Cyclic transfer algorithms for multivehicle routing and

scheduling problems. Operations Research, 41:70–79, 1993.
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A The set of instances

In Table 1 we list the instances used in the experimental analysis. We add instances from
three other classes not included in the text:

– Optical network graphs. Graphs from real-life optical network design problems. Each
vertex corresponds to a light-path in the network and edges correspond to intersecting
paths.

– Quasigroups graphs. Constraints on a multiplication table of a quasigroup defines a
Latin Square. A Latin Square is a table such that no symbol occurs more than once in
a row or in a column. Graphs model this table and the chromatic number is the order
N of the quasigroup.

– Latin Squares Graph. Graph representing a problem from the design theory, relating to
Latin squares. The graph has 900 vertex and independent sets no larger than 10 vertices.
It is an open question whether or not this graph can be coloured with 90 colours. It is
considered an hard problem [29].

inst n ρ q sd(q) q sd(q) DSATUR χ(G) LB best known
DSJC125.5.col 125 0.51 62.26 5.304 0.502 0.0428 22 - 12 17
DSJC250.1.col 250 0.1 25.74 5.119 0.103 0.0206 10 8 8 9
DSJC250.5.col 250 0.5 125.3 7.803 0.503 0.0313 37 - 13 22
DSJC250.9.col 250 0.9 223.2 4.604 0.896 0.0185 92 35 72
DSJC500.1.col 500 0.1 49.83 6.67 0.0999 0.0134 16 - 6 12
DSJC500.5.col 500 0.5 250.5 11.05 0.502 0.0221 65 - 16 48
DSJC500.9.col 500 0.9 449.7 6.366 0.901 0.0128 170 - 42 126
DSJC1000.1.col 1000 0.1 99.26 9.512 0.0994 0.00952 27 - 6 20
DSJR500.5.col 500 0.47 235.4 64.7 0.472 0.13 130 26 124
le450-15d.col 450 0.17 74.44 21.24 0.166 0.0473 24 15 15 15
queen10-10.col 100 0.59 29.4 2.344 0.297 0.0237 14 - - -
queen11-11.col 121 0.55 32.73 2.582 0.273 0.0215 15 11 11 12
queen12-12.col 144 0.5 36.06 2.818 0.252 0.0197 16 - - -
queen13-13.col 169 0.47 39.38 3.055 0.234 0.02 17 13 - 14
queen14-14.col 196 0.44 42.71 3.291 0.219 0.02 19 - - -
queen15-15.col 225 0.41 46.04 3.528 0.206 0.0157 21 - - 17
queen16-16.col 256 0.39 49.38 3.764 0.194 0.0148 23 - - 18
school1-nsh.col 352 0.24 83.02 35.17 0.237 0.1 27 14 14 14
wap01a.col 2368 0.04 93.64 48.21 0.0396 0.0204 47 - - 42
wap06a.col 947 0.1 92.02 48.84 0.0973 0.0516 46 - - 42
qg.order30.col 900 0.06 58 0 0.0645 0 36 30 30 30
qg.order40.col 1600 0.05 78 0 0.0488 0 45 40 40 40
qg.order60.col 3600 0.03 118 0 0.0328 0 69 60 60 60
latin-square-10.col 900 0.76 683 0 0.76 0 132 - - 99

Table 1. In an instance with n vertices and density ρ, each vertex vi, i = 1, . . . , n has a degree
qi ∈ {0, 1, . . . , n − 1}. We report the average vertex degree, i.e., q =

1

n

∑n

i=n
qi and the standard

deviation. Moreover, to make direct comparisons among instances with different number of vertices,
we also report the normalisation of q: q =

q

n−1
and its standard deviation. Concerning the colouring

number we report the value found by the constructive heuristic DSATUR of Br élaz, the chromatic
number, when known, a proved lower bound and the best approximate solution found in the literature.

B Further results

In the two following tables we report further results of two main experiments described in
the text. In the third, we show instead peak performances reached by the algorithm studied
when the Hybrid approach of Tabu Search and Iterated Local Search is applied.
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1-exchange Kempe Chains PenFunct
inst Min succ mean.iter Min succ mean.iter Min succ mean.iter
queen10-10.col 13 1 0 13 19 19 13 4 9
queen11-11.col 15 10 3 14 6 25 15 16 14
queen12-12.col 16 8 3 15 1 33 16 9 25
queen15-15.col 20 7 3 19 7 47 20 14 35
queen16-16.col 21 5 4 20 3 43 21 7 32
DSJC250.1.col 11 6 2 11 28 51 11 1 35
DSJC250.5.col 39 3 2 36 3 60 37 1 43
DSJC250.9.col 92 5 5 88 1 28 87 1 29
DSJC500.1.col 18 44 3 17 20 120 18 10 50
DSJC500.5.col 68 1 2 64 6 125 64 1 145
DSJC500.9.col 171 5 4 161 3 59 161 1 53
DSJC1000.1.col 29 9 6 27 1 293 29 6 167
DSJR500.1.col 13 6 2 13 30 173 13 2 3
DSJR500.5.col 141 1 0 141 2 56 141 3 34
le450-15d.col 29 35 2 27 2 122 28 4 67
qg.order30.col 32 6 3 30 26 94 32 17 51
school1-nsh.col 35 5 5 16 3 431 32 1 172
wap06a.col 51 3 4 49 3 447 51 5 119
latin-square-10.col 144 10 4 124 10 255 130 10 232

C+1 C+P+1 (C+P)-1 1-(C+P)
inst Min succ mean.iter rate Min succ mean.iter rate Min succ mean.iter rate Min succ mean.iter rate
queen10-10.col 12 1 17 1.13 12 2 15 0.53 12 2 12 0.21 13 52 10 1.85
queen11-11.col 14 23 9 0.52 14 33 8 0.37 14 34 8 0.07 14 38 13 1.99
queen12-12.col 15 10 11 0.52 15 20 11 0.27 15 13 11 0.10 15 23 17 1.99
queen15-15.col 19 22 12 0.59 19 38 11 0.35 18 5 21 0.06 18 3 32 1.94
queen16-16.col 20 20 14 0.50 20 36 14 0.38 20 26 14 0.12 19 1 43 3.30
DSJC250.1.col 10 11 14 0.34 10 21 15 0.18 10 21 13 0.01 10 18 26 2.37
DSJC250.5.col 36 1 19 0.36 35 5 28 0.26 35 1 25 0.19 35 1 49 2.27
DSJC250.9.col 84 1 20 1.00 82 1 32 0.60 86 1 25 0.47 84 1.09 22 1.44
DSJC500.1.col 15 1 42 0.27 16 39 21 0.13 15 1 44 0.00 15 1 79 2.29
DSJC500.5.col 63 1 61 0.61 62 1 45 0.10 63 3 44 0.14 63 3 65 1.93
DSJC500.9.col 163 2 38 1.00 161 1 53 1.04 165 3 20 0.34 155 1.08 82 1.48
DSJC1000.1.col 28 4 28 0.79 27 1 44 0.47 27 4 53 0.00 28 31 42 2.48
DSJR500.1.col 12 3 9 0.13 12 13 10 0.09 12 15 9 0.00 12 19 14 0.89
DSJR500.5.col 136 2 17 0.38 136 4 14 0.26 137 2 13 0.24 135 1 20 0.67
le450-15d.col 26 9 22 0.33 25 3 30 0.10 24 1 44 0.02 26 7 37 2.10
qg.order30.col 31 7 25 0.79 31 45 22 0.50 31 37 25 0.34 31 76 37 2.17
school1-nsh.col 33 2 22 0.63 30 1 31 0.55 31 1 32 0.00 31 1 50 2.13
wap06a.col 51 7 6 1.63 50 6 10 0.27 49 1 13 0.00 50 6 14 1.86
latin-square-10.col 143 10 33 1.75 136 6 57 0.33 138 20 48 0.04 135 10 94 2.62

Table 2. Statistics of results obtained by 100 runs of each local search. Shown are the best number
of colours found, the times in which this colour was attained expressed in percentage, the average
number of iterations needed for reaching that number of colours and the rate between 1-exchange
and k-exchange moves performed.

1-exchange C+1 C+P+1 (C+P)-1 1-(C+P) Kempe Chains PenFunct
inst Min succ Min succ Min succ Min succ Min succ Min succ Min succ
queen15-15.col 16 70 17 20 17 100 17 100 17 80 17 90 17 100
queen16-16.col 17 40 19 30 18 100 18 100 18 90 18 100 18 100
DSJC250.1.col 8 100 10 10 9 100 9 100 9 80 9 60 9 90
DSJC250.9.col 72 100 74 20 74 10 73 80 73 10 73 10 73 20
DSJC500.1.col 12 10 17 50 14 80 13 50 13 20 14 80 14 80
DSJC500.5.col 49 100 58 50 53 70 52 10 54 10 55 20 54 10
DSJC500.9.col 126 10 135 10 133 10 130 20 133 20 132 10 133 10
DSJC1000.1.col 21 100 27 20 24 10 22 10 22 10 23 40 23 80
le450-15d.col 16 100 27 50 23 40 22 50 22 10 22 10 22 10
qg.order30.col 30 100 30 100 30 100 30 100 30 100 30 100 30 100
school1-nsh.col 14 100 15 10 14 10 14 10 15 10 20 10 14 20
wap06a.col 42 60 47 40 45 10 45 30 44 10 45 10 45 10
latin-square-10.col 101 100 106 33 110 33 117 33 109 33 117 33 102 33

Table 3. Peak performance of the Hybrid Approach (TS+ILS). Given are the minimum number of
colours found and the percentage of success in 10 trials per each algorithm on each instance. In bold
the best results.


